

Archimedes Game
Maker's Manual

Terry Blunt

SIGMA PRESS - Wilmslow, United Kingdom

Copyright ©, T. Blunt, 1992

All Rights Reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission.

First published in 1992 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.

British Library Cataloguing In Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058-241-6

Typesetting and design by

Sigma Hi-Tech Services Ltd

Printed in Malta by
Interprint Ltd.

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names protected by
copyright are mentioned for descriptive purposes. Full acknowledgment is
hereby made of all such protection.

Preface

This book is for those new to the Archimedes, and probably new to games
programming. Of necessity, some knowledge of programming in Basic is
assumed, so with this in mind working with a copy of the BBC Basic Guide
to hand is advisable. For those producing promising games, but needing to
delve deeper into the Archimedes for more advanced work, serious
consideration should be given to the expense of the Programmers'
Reference Manual.

The Acorn Gamemaker's Manual can be separated naturally into two parts.
The first is a guide to planning and design, as well as programming
techniques particularly applicable to games. The second part is three
groups of subsections that concentrate on each loosely defined game type.
As it is impossible to define precisely a game type these days, reading
over several in the same group will probably be necessary. There is a final
chapter devoted to using the Basic assembler to produce useful ARM code
extensions.

The ideas and methods contained here are intended as a guide rather than
a set of absolute rules, so with increasing experience it will be possible to
extend and improve on this work. Also, even the very best programmers
will admit that there's always a different view of a familiar task, so it pays to
look closely at any program listings that come to hand. The ideal solution
to a problem could quite easily be buried deep inside something as remote
from games as a desktop diary program.

iv Archimedes Game Maker's Manual

Acknowledgements

I would like to thank Minerva Software for their interest and suggestions
while this book was in its early stages, Nick Pelling for some timely help
near the book's completion, and Steve Turnbull for encouragement and
moral support throughout the development of this, the most complex work I
have undertaken to date.

Terry Blunt

CONTENTS

1. Introduction .. . 1
1 .1 About the Archimedes 1
1.2 The Environment · 3
1.3 Programming Techniques4
1.4 Making Notes ... 9

2. Early Planning 12
2.1 Finding Ideas 12
2.2 Targeting 13
2.3 Types of Game 14
2.4 Originality 15
2.5 Addictiveness 16
2.6 Desktop Games 17
2.7 Teamwork 17
2.8 Some Dos ... 18
2.9 Some Don'ts 20

3. More Planning . .. 22
3.1 Identifying Major Stages 22
3.2 Data Structures 24
3.3 Layouts ... 25

3.3.1 Positioning 26
3.3.2 Proportions 27
3.3.3 Novelties .. 27

3.4 Preliminary Testing 28
3.5 Time and Memory 28

3.5.1 Improving loops 28
3.5.2 Subroutines .. 29
3.5.3 Faster printing 29
3.5.4 Arithmetic variations 30
3.5.5 Decision ordering 30
3.5.6 Data 31
3.5.7 Look-up tables 31
3.5.8 Screen handling 31
3.5.9 A last twiddle 32

vi Archimedes Game Maker's Manual

3.6 Alternative Strategies 32
3.6.1 Flags ... 33
3.6.2 Simplifying 33
3.6.3 Advance calculations 34
3.6.3 Interleaving 34

3.7 Time Sharing 34

4. Static Graphics 36
4.1 Drawn Pictures 36
4.2 Sprites 40

4.2.1 User sprites40
4.2.2 Sprite masking 40
4.2.3 Sprite control40
4.2.4 A sprite example 41

4.3 User Defined Characters 44
4.4 ECF Patterns ... 48
4.5 Backgrounds 50
4.6 Banked Screens 52
4.7 Clearing Screen Areas 54
4.8 Smartening Up 54
4.9 Fancy Fonts .. 59

5. Making It Move 63
5.1 Objects 63
5.2 Movement 63
5.3 Animation 70

5.3.1 Colour changing 71
5.3.2 Animating sprites 73

5.4 Collision Detection 75
5.4.1 Coordinate collisions 75
5.4.2 Pixel collisions 79
5.4.3 Cell collisions 81
5.4.4 Pointer collisions 87
5.4.5 Look ahead 88

5.5 Scrolling .. 90
5.5.1 Hardware scrolling 90
5.5.2 Scrolling in software 93
5.5.3 ARM code scrolling 95

6. More Dimensions .. 96
6.1 3D 96

6.1.1 Cartoon styles 96
6.1 .2 Scaling 97
6.1 .3 Perspective 99
6.1 .4 Wire-frame drawings 103
6.1 .5 Hidden lines 109
6.1 .6 Rotation 11 o
6.1.7 Matrices 11 O
6.1.8 Universal movement and rotation 112

Contents vii

6.2 Sound ... 113
6.2.1 Music .. 113
6.2.2 More voices 118
6.2.3 Voice generator utilitiy 119

7. Arcade Games 140
7.1 Alien Zapping ... 140

7.1.1 Movement tables 140
7.1.2 Formations 144
7.1 .3 Flocking 150

7.2 Rebounds 153
7.2.1 Bounce patterns 154
7.2.2 Baby Breakout. 155
7.2.3 Spin ... 158
7.2.4 Gravity ... 159

7.3 Platforms 161
7.4 Map Compression 169
7.5 Score Tables 170

8. Role Play 178
8.1 RPGs 178
8.2 Adventures 188

8.2.1 Rooms 188
8.2.2 Locating objects 189
8.2.3 Understanding instructions 190
8.2.4 Finding nouns 194
8.2.5 Puzzles 195

8.3 Combat 196
8.4 Simulators 197

8.4.1 Real world situation 197
8.4.2 Community simulations 200
8.4.3 Graphical simulations 201
8.4.4 Terrain mapping 202

8.5 Status Saving and Reloading 205

9. Strategy 206
9.1 Algorithms and Rules 206

9.1.1 Regional variations 206
9 .1 .2 Symmetrical patterns 207

9.2 Recursive Computer Moves 209
9.2.2 Minimaxing 209
9.2.3 Limiting recursion 210
9.2.3 Pruning 21 O
9.2.4 Fuzzy thinking 211

9.3 Weighting Schemes 211
9.3.1 Keymoves 211
9.3.2 Randomising 213

9.4 Introducing Othello 213

viii Archimedes Game Maker's Manual

9.5 Card Games .. 214
9.5.1 Displaying a hand 215
9.5.2 Patience layout 215
9.5.3 Implementing Patience 216
9.5.4 Shuffling 217

9.6 Tile-based Games 217
9.7 Word Games 218

9.7.1 Binary searching 219
9.7.2 Text compression 219
9.7.3 User dictionaries 222

9.8 Strategy in 30 223

10. ARM Code .. 225
10.1 Why Use It? 225
10.2 Fast Object Tables 225
10.3 Direct Screen Manipulation 229
10.4 ARM Sprites 232

10.4.1 Simple sprites 232
10.4.2 Masking 237
10.4.3 ARM collisions 239

10.5 Reflected Images 244
10.6 ARM Scrolling 248
10.7 Some Final Points 253

10.7.1 Random numbers 254
10.7.2 Square roots 255
10.7.3 Fast circles 257
10.7.4 Clipping 260

Appendix A: Some Useful Sprite Calls 262

Appendix B: VDU Variables (Sub-set) 266

Appendix C: Screen Modes for Standard Monitors 267

Appendix D: Plot Codes 268

Appendix E: VDU Commands 270

Index ... 273

Introduction

1.1 About the Archimedes
The Archimedes has been designed very specifically as a fast graphics
machine. At the time of its launch, the only really effective Wimp driven
systems were the most expensive business machines. Since then, some
older, command line driven operating systems, as they are called, have
had bits bolted on to try and bring them up to date. This is never very
satisfactory however, when two basically incompatible design concepts are
being forced together.

Again, many command line driven computers look decidedly clumsy now,
often having little by way of programmer support. Hence, there tends to be
a wide variety of usage, and little standardisation of keyboard/mouse
handling, file and data transfer, or resource sharing. This ultimately makes
it harder for the computer user to get the best out of the machine, and is
liable to result in programs full of obscure bugs.

There can be very few computer manufacturers in Acorn's enviable
position of having designed the processor and its major support chips, the
software in the form of Rise Os and many support applications, as well as
the overall design of the complete computer system. Thus Acorn have an
unusually intimate knowledge of every part of the Archimedes, and can
give detailed information with a very high degree of confidence.

While the Archimedes was running under the Arthur operating system, and
arguably still effectively in final development, Acorn spent a considerable
amount of effort persuading the major programming organisations to
adhere to their protocols. This included not only the Wimp environment,

2 Archimedes Game Maker's Manual

but also the low level interfacing with the Rise Os operating system itself.
The success of this strategy has resulted in a powerful, integrated system
that is readily expandable both from a hardware and a software point of
view, a system well suited for either home or commercial use.

It is doubtful whether there has been any computer that hasn't, at least in
passing, had an attempt made to use it for playing games, regardless of
whether or not the machine is really suitable. However, the speed and
graphic capabilities of the Archimedes makes it a fairly natural choice for
modern graphically orientated games. Indeed, although always a danger­
ous statement to make, it is probably currently, the best machine available,
being able to deal comfortably with the demands on speed, memory and
graphical capability, all at a reasonable cost. In fact, the heart of the
machine is currently used by a French arcade game manufacturer as its
game engine.

An area of computing often overlooked is that of sound production. Acorn
have not fallen into this trap, but have provided a sophisticated sound
system giving eight channels of high quality stereo sound. The Archimedes
is capable of utilising complex sound generating algorithms, as well as
sampled sound data, most of the control being handled transparently in the
background. This is all the more remarkable when you consider that the
Archimedes doesn't have a dedicated sound chip set, but works by
software control of a relatively simple ND converter. This then makes the
Archimedes the ideal platform for developing your ideas into fast, colourful,
lively games.

Obviously with all the features available under Rise Os, comes consider­
able complexity, and it is likely that you'll have to spend a fair amount of
time getting to know the machine. There is a great temptation to criticise
features that appear to be unnecessarily complex, but as you become
more familiar with Rise Os you will see that there are very practical
reasons for Acorn 's compromises, not the least of which, in some cases, is
that of maintaining compatibility across an unusually wide range of old and
new hardware.

Acorn's long term policy of maintaining compatibility over different models
provides a high degree of confidence that, provided you stick to Acorn 's
guidelines, the game ideas and programming techniques you develop will
be valid for a long time, probably far longer that the commercial life of the
games themselves. Acorn make the point that, in real terms, there is
absolutely no benefit in trying to use the old peek and poke tricks, that
were so common in the older machines.

Introduction 3

1.2 The Environment
Most of the ideas in this book assume that you are working in Basic.
However, Acorn Basic Vis such a well structured language that, provided
you 've developed the habit of using tight, self-contained modules, moving
over to another high-level language should present few problems. You may
well be tempted to use one of these compiled languages, or even one of
the compiled versions of Basic. Sacrificing some accessibility in this way
can be an advantage in the form of a small degree of copy protection.

Compiled languages can be quite difficult to disassemble. Added to this,
many compilers have facilities to enable you to create relocatable modules,
or turn your program into a fully self contained application. On the
downside, even the Basic compilers currently available, are more fussy
about things like empty loops and procedure exit points. Some features of
Basic V, such as the EVAL function can't be realised at all. In general, with
compilers of any high-level language, you will need to be more organised
in your programming style.

The commonest reason for choosing to compile is to increase execution
speed. This will add smoothness and polish in many situations, but if there
is a serious speed problem, choosing to compile for this reason alone, may
simply mask rather than cure it, and the difficulties may show up again
later. If you have such problems it is likely that you should either
re-consider your data structures or look again at the practicality of your
overall game design. Possibly you should move critical sections into
assembled ARM code, which is the most efficient form of all. However,
neither compiling nor moving to ARM code will make very much difference
where the time delays are mainly caused by intensive screen manipulation
through the normal VDU drivers.

There are quite a few sections of ARM code in this book. I make no
apology for this, as there are some things which simply are not practical to
do in any high level language. The sections of code I've included are so
short that you should have no problems using them, even without
understanding how they work. In any case ARM code is probably the
easiest modern machine language to understand, so once you are familiar
with it, you may find you actually prefer working from Basic simply in order
to assemble fast efficient ARM code.

There is a chapter specifically on ARM code for direct screen manipulation
and the like. This is really aimed at those of you who already have an
understanding of ARM code programming. However, those less familiar
with this subject, will still be able to make use of the code fragments in this

4 Archimedes Game Maker's Manual

chapter, but may have difficulty expanding the ideas contained. I
recommend that you either follow up by reading through the ARM
programming series, run by several of the BBC Micro magazines or the
ARM programming books now available.

A large number of operating system routines are available to you from
Basic via SYS calls. These let you really get into the machine and make
full use of the operating system, with a high degree of confidence that your
programs will survive any future improvements in the hardware and Rise
Os itself. Those of you familiar with the older BBC machines will
particularly appreciate the ability, in many cases, to pass parameters in,
and get results back from, these calls without the need to set up special
parameter blocks.

Acorn use a highly sophisticated system of memory management. One of
the results of this is that very few areas of memory are fixed. Where it used
to be common to peek and poke memory directly to gain speed advantage,
or for various special effects, such techniques are doomed to failure on the
Archimedes. Acorn provide reliable official entry points to all the routines,
and memory areas you could possibly want to access.

1.3 Programming Techniques
Quite a few of the example program sections in this book are rather crude
and unfinished. I've done this quite deliberately so that you can see the
principle or idea as clearly as possible. In any case, you're supposed to be
writing the game not me! I've also used simple drawing routines instead of
sprites for some demonstrations. These wouldn't normally be practical as,
even on the Archimedes, they are rather slow, but are simpler to program
and easier to follow when demonstrating a point.

As this book is more heavily weighted on games aspect rather than pure
programming techniques, there are some unexplained details in the
program examples. Unfortunately this is necessary to prevent the book
becoming unmanageably large and heavy going. The really obscure points
are explained, but if you find that some other points seem curious I can
only assure you that there are sound reasons for them, and that a little
experimentation will probably reveal these. If all else fails, look through the
relevant parts of the Basic Guide, or if you have it, the Programmers'
Reference Manual.

As a general rule, you will have to take great care with error checking and
input range tests, although I haven't done much of this with my examples.
By the very nature of the activity, players are likely to be very careless and

Introduction 5

inaccurate when thoroughly engrossed lin a really exciting game. The
keyboard and mouse are likely to be sending all sorts of rubbish to your
program so your input routines must be r~ally bomb proof_./

/

Be wary of using the Ctrl key for any ga~e functions - you can get some
highly undesirable effects when this key is hit at the same time as others.
By default, Ctrl+[has exactly the same effect as pressing the Escape key.
In fact, it would be wise to completely diskble normal Escape key action in
the main game loop, and have it tightly controlled with error procedures in
the rest of the game. You'll make yourself extremely unpopular if, in the
middle of a particularly frantic starfight, your player sees Escape at line
220.

As well as accidental errors, you should also make some allowance for
deliberate input errors. Mind you, if that is happening it tends to suggest
that your players may be getting bored. Occasionally people will enter long
strings of digits for numbers, trying to make the game crash. By using
string input, and checking the length, the program section below
completely eradicates this problem. If the player just presses Return or
enters letters, or even control characters, the routine will simply return a
zero.

REPEAT
INPUT number$

UNTIL LEN number$<39
number%=VAL number$

Similarly you should check for mouse button presses, by masking the bits
to avoid the confusion of two buttons being pressed at the same time. You
would then use something like the lines:

MOUSE x%,y%,b%
IF (b% AND 2)=2: REM menu pressed

Alternatively to trap all eventualities use a case statement like the following
snippet:

MOUSE x%,y%,b%
CASE b% OF

WHEN 7:REM select+menu+adjust
WHEN 6:REM select+menu
WHEN S:REM select+adjust
WHEN 4:REM select
WHEN 3:REM menu+adjust
WHEN 2:REM menu
WHEN l:REM adjust
OTHERWISE:REM no buttons

ENDCASE

6 Archimedes Game Maker's Manual

There are many situations requiring nested loop structures, which can be a
fine opportunity for mixing up loop counters. You should therefore take a
fixed policy towards the names of variables used in these situations, and
their order of precedence. This is shown with the following somewhat
contrived fragment.

FOR K%=4 TO 90 STEP 3 : REM only J & I loops inside K
J%=21
REPEAT

J%-=l REM yes it's a loop counter
FOR I%=0 TO 4 REM no loops inside this one

IF block%(J%,K%,I%)>5 end%=TRUE
NEXT

UNTIL J%=0 OR end%=TRUE
FOR I%=0 TO 5 : REM not J - it ' s an inner loop

IF NOT end% THEN count%+=1
NEXT

NEXT

Following a series like I, J, K, L, M, ensures that you always know what
nesting depth you 've reached regardless of the order that the loop
variables are be used in array indices and the like. To be consistent, you
mustn 't use these variable names for anything else in your program.

In any case, it's a good idea to make a point of being consistent with your
use of variable and procedure names. Personally, I take a policy of using
lower case letters for all except the resident integers A% to Z%. These I
usually reserve for fast loop variables, passing values into ARM code, or
for passing values from one program to another. If you keep all other
variables to lower case, keywords stand out more clearly and there is no
possibility of accidentally creating hidden embedded keywords in variables,
like the TO in TOTAL%. It is also wise to avoid subscript variables like
a1%, a2% and a3% unless there are clear mathematical reasons for their
use. These can become very confusing.

Further confusion can result from the use of the underline character in
variable names. Although quite acceptable to Basic, and giving neat
looking words in printed listings, it is very easy to put a minus sign in by
mistake. Deeply embedded in a nest of genuine mathematical symbols,
such an error would be very difficult to find.

Yet another source of confusion is excessive use of multi-dimensional
arrays. It's very tempting to try to pack an entire data structure in one
array. But this can be very difficult to follow, and in any case is not always
the most efficient form either for memory or speed. You are generally
better off using a group of arrays dimensioned to the same size, often
referred to as parallel arrays. If a single array is unavoidable, then consider

Introduction 7

using constants for the subscripts rather than numbers. It makes it easier
to follow, and update if necessary.

Compare the following:

DIM parameters%(3,40)
DIM size%(40),weiqht%(40),colour%(40),position%(40)

Similarly, where you're obliged to use a single array:

DIM attrib%(5,l,30)
strenqth%=0:psi%=1
intelliqence%=2:stamina%=3
experience%=4
us%=0:them%=1

Then in the main body of the program

friend%=23:foe%=9

Compare these:

try%=attrib%(0,23,1)-attrib%(1,9,1)
try%=attrib%(us%,friend%,psi%)-attrib%(them%,foe%,psi%)

Generally I recommend the use of constants. You may want to incorporate
new features in your game, involving adding an extra element in an array
for example. It becomes extremely tedious when you have to hunt out
every FOR-NEXT loop to change the terminating value, where using a
constant requires only one change.

Often when designing a screen layout, even from a paper plan, there are
small adjustments needed in the positions of objects to make the overall
effect look balanced. If you use constants, for things like borders and
panels in particular, then you will only need to adjust the constants to
re-align all parts of that particular group.

MOVE 1eft%+width% DIV 2-ha1fchar%,bottom%+heiqht%
PRINT "H"

Although this looks rather wordy, you can always thin it down later when
you are satisfied with the overall appearance. Many of the examples are
spread out like this, and significant time and memory savings can be made
by compressing the final working program.

Many programmers drop procedures and functions all over the place in a
program with no thought given to the overall readability. A better idea is to
decide on an order of precedence and stick to it as closely as possible.

8 Archimedes Game Maker's Manual

A very common form is to list these routines in the order they are called,
combined with a nesting level. As this is easier to show than explain, there
is a typical program framework below.

REM ------ Main game loop
REPEAT

PROCinitialise
REPEAT

PROClevel
UNTIL levelend
PROCupdate

UNTIL qameend
PROCfinalise
END

REM ----- 1st level routines
DEF PROCinitialise

REM code
ENDPROC

DEF PROClevel
result=FNkey
REM code

ENDPROC

DEF PROCupdate
PROCinput
REM code

ENDPROC . :
DEF PROCfinalise

REM code
ENDPROC

REM ----- 2nd level routines
DEF FNkey

REM code
=result

DEF PROCinput
REM code

ENDPROC

Obviously there is a limit as to how far you can take this idea. You may, for
example, have your key press function being called from several routines
at different nesting levels. You should then put it at a level below the
lowest one that calls it.

Introduction 9

If you use the Basic editor to work on your program, which is definitely
advisable, you can temporarily move a procedure or function to the very
end of the program while you work on it. This means you can get to it with
a simple ShifUDown cursor in the editor, and just List, from Basic. You'll
find this rather easier than having to search by line numbers, which will of
course change as you add to the program. When the routine is reasonably
under control you can move it back where it belongs.

1.4 Making Notes
Probably the most repeated and most ignored programming advice is that
of documentation. I repeat it here, as I believe it is essential for effective
programming. It really is important that you make some form of plan. It is
also important to make notes of what ideas you get, as you get them,
preferably dated, and including the reasons why you decided on any
specific course of action. This last is probably the most important of all. In
the past, I have wasted hours trying to understand a complex piece of
code that seems to defy logic, a section of code that I wrote only a few
months previously.

When I have a new idea to work on, I usually take an easy informal
approach at first. I simply keep a separate folder for each project I'm
working on, with loose sheets of paper in it. These are dated and dropped
in while I think out an overall idea and try to clarify in my mind the overall
structure of the idea. At this stage it is the idea I try to structure, not the
program that will eventually result. When I come to develop the program
properly I read through all my notes before doing anything else. I've learnt
from experience to keep these early notes even after I've prepared more
organised documentation.

Once you have enough ideas put together to give you an outline of your
game, you should start the proper documentation. Initially, using your
informal notes, make out a simple list of exactly what the game is and what
it does roughly in order. The example below should give you a clearer
idea.

OThis game is a combat game

O There are two teams of opponents (goodies and baddies)

o Goodies are controlled by the player, baddies by the computer

O There is an option for baddies to be taken over by a second player

10 Archimedes Game Maker's Manual

o Fights are between pairs of opponents

O Any goodie not attacking a baddie will be a first target for the baddies to
attack

o Any attacker may fumble and strike itself or a comrade by mistake.

Lots of people throw up their hands in horror as soon as you talk about
documentation, flow charts and pseudo code. In fact it's much easier to
handle these ideas than you might think. In the first place, taking a simple
comparison, nobody's frightened by a list of knitting instructions. This is, of
course, the documentation using a specially coded unambiguous set of
instructions, for making the garment. In other words, a pseudo language.
Your knitting pattern will almost certainly have a set of diagrams showing
the order in which each part of the garment is to be made and fitted to the
rest. This is a clear example of a flow chart.

In brief, pseudo code can be any set of instructions that are completely
unambiguous. It doesn't necessarily have to follow any commercial
guidelines, as it's for your benefit only. A flow chart is a diagram that
shows the running order of events, and again there is no need to worry
about whether you are using all the correct symbols. Just draw boxes, with
a two or three word note explaining what the box is, and arrows leading
from one to the next.

In your documentation, along with a detailed program outline, you should
list all procedures and variables that are used. For procedures and
functions, include all parameters passed in, noting which may be modified.
Also give a brief description of the purpose of the procedure. Here is a
typical example of this.

Name : PROCsetsprites
Sources: Spritearea%, spritepointer%(), DATA
Function : Creates a table of sprites, reading data from the first line after the

procedure, using workspace at spritearea% and filling array
spritepointer%() with the address of each sprite. Total number of
sprites is in spritetotal%

Results: Spritepointer%(), spritetotal%

This may seem rather tedious, but in a program of any size, that may take
months to develop, a little time /'spent on documentation can save you
hours of frustration . This is particularly true of variable names. It is
amazingly easy to choose the same variable name for two different jobs,
resulting in the most obscure bugs to try to find. You should do this work
as you develop the routines. If you leave it till later you will almost certainly

Introduction 11

have forgotten important points, and will probably find the task of
documenting 40 or 50 routines a daunting prospect. If you are fortunate
enough to own two computers, you could have the second one set up as a
wordprocessor for instant access. Sometimes I use an elderly BBC Model
B for this.

Once again, keep your earlier documentation. If flaws develop in your
logic, provided you have kept as much detail as possible while developing
your design, these problems will be easier to follow back to their source.

There are two distinct schools of thought regarding comments and remarks
within program listings. On the one hand you may be advised to sprinkle
you programs liberally with remarks, but at the other extreme you'll be told
that you should keep all your comments in the main documentation.

If you intend to compile your program you can probably afford to be pretty
liberal with comments, although too many on one block of code can,
instead of being an aid, become quite confusing. Where you are running
interpreted Basic, the situation is quite different. Any extra text in the
program both consumes processing time and memory. Therefore it is
probably best to make more detailed documentation and keep your
programs clear and uncluttered.

Early Planning
It's a great shame that, for many people, the rush of enthusiasm for an idea,
rapidly dissipates when they are told that they will have to plan out their idea
to make use of it. The unfortunate consequence of failing to do so, almost
always results in disaster as unexpected problems arise. Often a basically
sound idea is then abandoned completely as being impossible.

With this in mind, I've drawn up the planning ideas in this chapter. As with
most of this book, the suggestions are not rules etched in stone, but a
starting point, which you can build on and alter to suit your needs. I dislike
planning ahead as much as anybody else, so I try to keep documentation to
the bare minimum without losing important information. Probably the most
important point to keep in mind, for both game design and programming in
general, is to be consistent in whatever approach you choose.

2.1 Finding Ideas
For a lucky few, ideas come fully formed while languishing in the bath.
Unfortunately, for the rest of us, quite a bit of effort is involved in generating
ideas. It is important to be clear at the outset, as to whether you intend to
write for your own satisfaction, and that of your family and friends, or
whether you hope to write games for commercial distribution.

In the former case you only need to follow up comments from your friends,
and can get a framework for a game quite easily from them. The standard of
gameplay could afford to be lower as well, because much of the attraction of
the game will be that it is a home brew. However you'll probably get little
satisfaction from writing a game you know is below standard, no matter how
much some of the family might like it. ,

Early Planning 13

If you are determined to get your name in the charts, I'm afraid you'll have
to forget the games you personally think are the best, and be a bit more
commercially minded. Have a good look at the ones that seem to be
selling. As well as playing them yourself, if you get the chance, watch other
people playing them. If you have the opportunity go along to some of the
computer exhibitions. You'll get a free look at some of the best games on
the market, and with the larger shows, you can see what the competition is
like on non-Acorn machines. Another point is that at these shows you can
chat with a wide cross-section of the computer using public.

You should be looking for the things that are most disliked. These are the
features you want to avoid in your games. Human nature is perverse
enough to ensure that, out of a dozen features, people will discuss the one
point they find objectionable in preference to the other 11 they approve of.

You may find, after looking over a number of existing games, that there
seems to be a gap in what's available. Obviously, the more games you
see, the better your chance of finding such a gap. If you're lucky you could
be on the track of some entirely new action.

It is very easy to get discouraged when you see the slick presentations of
some software houses. Keep in mind that most of these have teams of
professional programmers with years of experience, but that all the
professional expertise in the world will not overshadow a single really good
idea. Once you start writing games, you will develop your own tricks and
hopefully, end up having other people envying your work.

2.2 Targeting
When forming the outline of your game you need to consider who it is
aimed at. Apart from anything else, you need to know what degree of
complexity you can reasonably expect your players to cope with. With this
in mind, when writing games that have a large number of dynamic controls,
such as flight simulators, it is advisable to provide an auto option for as
many as possible. In this way players can slowly take over control of the
whole game as they become more experienced. I have frequently
discarded games that looked promising at first, simply because they
demanded too much too quickly, and became a chore instead of fun.

You also need to take into account the of age of your potential players. In
general, the peak age for Alien Zappers is about 14, and for Adventurers
it's nearer 18. Very young players need games that are brightly coloured,
with little detail, low player accuracy, and short concentration times. People
in their 20s are more likely to be interested in simulations and strategy

14 Archimedes Game Maker's Manual

games, and beyond 30 or so, your potential players are probably looking
for the very long term challenges that can be easily put aside for a while.
These may be sophisticated versions of all types, but requiring many hours
or even weeks, of concentration. Detail will be extremely important.
Financial simulations, for example, are most likely to be played by
middle-aged lower management people, or those who think they should be
there! Your player is likely to be pretty picky about simulations that refer to
long term loans, international exchange rates, interest and the like.

Having said all that, I don't think anybody can resist the occasional session
of a few minutes of pure, mindless destruction! I expect there will always
be a market for games that simply involve mass annihilation of hoards of
beasties.

2.3 Types of Game
It is important to work realistically within your limitations, and to choose the
type of game that you understand best. Although possible at a stretch, you
will have an uphill struggle if you try to write, say, a flight simulator but
know nothing at all about 30 projection. However, you can gain a great
deal of new knowledge and satisfaction from developing a game idea
where, at first, you only partly understand the basic principles. As you gain
experience you can take on progressively more sophisticated ideas.

In the later chapters of this book I've given descriptions and a breakdown
of the main game types. The list is not exhaustive and it's quite likely that
other people would give you a different list. As if that isn't enough, most
modern games contain elements of several basic types. This is particularly
true of the so-called graphic adventures, which are part zapp-'em, part
story. Initially game types can be subdivided as follows:

Arcade
Alien Zappi11g
Rebounds
Platforms

Role Playing
RPGs
Adventures
Combat
Simulations

Strategy
Cards
Board/Parlour Games

Early Planning 15

The first group consists principally of fast response games, hence their
attractiveness in the arcades. For these you will need to be able to
produce really tight programs. You need to be able to see the action very
clearly in your mind, from a programming point of view, and be able to
circumvent speed bottlenecks. However, you generally won't need a
knowledge of mathematics beyond middle school level, and your game will
only require cartoon type realism.

The second group requires more of an understanding of relationships and
trigonometry rather than absolute speed. Here you will be mainly thinking
from the point of view of how a change in one piece of data will affect its
neighbours. At the same time, most of these games have a background
map structure of some form, which may also interact with other data types.
Any graphics are likely to be more detailed, and require greater realism.

In the last group, observed speed of execution is generally relatively
unimportant. Understanding algorithms and rule systems is your main
target. Your programming here will be more of a hard logic type. You can
expect to have to develop quite complex routines for computer generated
moves, most of them probably recursive in nature. Presentation is very
important. Your player will be gazing for long periods at essentially static
displays. Tiny details can develop an irritation factor quite out of proportion
to their size.

2.4 Originality
It is pointless writing a game that is more or less a copy of an existing one,
unless the one already available is remarkably poorly executed, or you
intend to produce a cut-down budget version to compete with a very
expensive game. In the latter case you will have to be very careful about
copyright. What you really need is an idea that is different to anything else
on the market, but not so different that it is hard to understand.

One possibility would be to add a new twist to an old game. A good
example of this kind of development is the breakout theme. From a simple
bouncing ball knocking out bricks, this has reached the point of multiple
balls, varying wall shapes and construction, extra bonus bricks, two player
options and even a circular bat movement instead of just side to side. So
far, I've not seen a breakout game that is genuinely three dimensional, so
there's one possible opening.

Old parlour games give other possibilities. After all, the basic idea behind
most modern platform games has a great deal in common with Snakes
and Ladders! As well as the familiar games like Chess, others such as

16 Archimedes Game Maker's Manual

Backgammon, Draughts, Ludo, Rrversi and Solitaire have all been
successfully transferred to computer environments.

It is also worth looking over real~life sporting events for ideas. Golf,
snooker and football simulations are now well developed, but there is
plenty of scope for improvement, and for new computer versions of other
games, ranging from grouse shooting in Scotland to white-water canoeing
in the Grand Canyon. I remember that an incredibly primitive fishing game
on the 8-bit BBC used to attract players away from far more sophisticated
commercial games, probably because fishing is something that almost
everyone can identify with.

Final!y there are the real-life working situations that you can draw on for
ideas. This, of course, is where flight simulators have their origins. A few
simple examples are:

O Rail transport system management

o Sea defence maintenance

O Sheep or cattle droving

o Fire fighting

o Deep space asteroid mining.

2.5 Addictiveness
The ideal game is one that people want to play indefinitely. The
psychology of this is quite complex, but hinges around two basic concepts:
Players must always get a reward and feel that at each attempt achieved
something better than the previous one.

A reward is not necessarily a successful completion of a level or section . It
could also be a well worded failure message, or display. Whatever it is, it
should be relevant, it should be encouraging, it should represent progress
in either direction, and if at all possible, it should not be repeated.

Varying the way each level ends, goes a long way to giving the player the
feeling of progress, but simple random variations will quickly be recognised
as that, and may actually serve to reduce player interest. One of the best
indicators of progress is time. As players become familiar with a game they
almost always react faster. Therefore, on the very first completion of a
level, store the time taken, even if it isn't part of your scoring system. On

Early Planning 17

the next completion of the same level, compare the times. If you have say,
a five percent improvement then give a more up-beat end message.

Try to avoid absolute time references. What you want to do is to mark
improvements against a player's own capabilities, not against those of
some lighting fast games freak.

2.6 Desktop Games
It is well worth thinking about arranging your game so that it can multi-task
as an application. Challenges like Patience or Solitaire are particularly
amenable to this treatment. Puzzle types, or text adventures are another
likely group. Your player will then be able to drop in and out of the game
easily while, say, writing to a friend, or doing the household accounts.
However, this idea is hardly practical with a game that heavily uses the
whole screen, or requires all 256 colours in the display.

Apart from any other considerations, your player is quite likely to have the
desktop set up for Mode 12, a 16 colour mode. An invaders type zap-'em
typifies this problem, and also makes such heavy demands on processor
time, it would be unlikely that effective multi-tasking would be possible.
Having said that, I have seen a desktop Space Invaders written entirely in
Basic, that certainly matches the playability of the earlier 8 bit implemen­
tations.

No matter what type they are, initially all your games should be made to
run as applications. Shift/Break can't be relied on to work, one reason
being that some players may have their machines configured to auto-boot
from a hard disk. All games should also be made to return cleanly to the
desktop with just an Escape key press, or mouse click on a suitable icon,
allowing other suspended tasks to continue where they left off. I know of at
least one distributor who won 't even look at a game that can't run this way.

2.7 Teamwork
It usually works out that the best programmers are not the best artists or
musicians, so it is well worth considering teaming up with a graphic artist,
or possibly, if you want to improve the sound content of your games, a
musician. On the downside, you lose a measure of control and need to be
far more organised. At the same time, you share the workload, and are
more likely to spot bugs before they become a real problem. You should
also end up with a game that is far better than any of you could produce by
yourselves. Most of the best games currently available are produced by
two or three people working together.

18 Archimedes Game Maker's Manual

It is particularly important to have good graphics. So much so, that it is well
worth devoting days or even weeks to getting a single screen just right. ·
The game playing public are becoming very fussy about standards of
artwork. Pretty scenery and cute monsters can make a rather ordinary
game into a best seller. Sound, at present, is less critical, but will get more
so as the public become educated as to what is possible, and will therefore
expect better sound effects and music from all games.

When , as a team, you have something that you think worth marketing, it is
probably as well for one of you to take on the role of front man. It can
become very confusing for potential distributors if they have several people
to deal with, all saying something very slightly different.

2.8 Some Dos
No matter how wonderful you think your title sequence is, it is a sad fact
that most people will get bored with it sooner or later, so you should
always provide a means of getting straight to the heart of the game.
Wherever possible use a system that enables either a key press or mouse
click to move on . This is also relevant for instructions, as once understood,
nobody wants to wade through sheet after sheet of text. However you
should always supply quite detailed instructions on, for example, a menu
click. This is much better than relying on a disk inlay card which has a
habit of becoming lost.

If no keys are pressed, it is well worth making the title screen time out to a
short demo of the main action, then possibly on to a score table, followed
by more action in another part of the game, and so on. As soon as anyone
touches the mouse or keyboard, the game should instantly go back to the
title screen, giving an immediate invitation to play. Let your potential
distributors know about this - it may well help to sell the game. Dealers will
be more likely to leave it running on a spare showroom machine.

Make sure there's a story line. We all know that in reality it's just a lot of
complex calculations, and fancy pixel pushing, but playing games is the
way most people suspend reality for a while. The sillier your story is the
better. Look at these examples:

Use the mouse to move the spot onto the rectangles to make them
disappear.

While out with your friends, hunting Gronks, you are appalled to see that
the Zarks, led by your old adversary Thrid, are building a dam across the
Wyde river. Instantly you realise that their plan is to inundate the beautiful
city of Crysta/fire, home of your true love. One of your friends has taken a

Early Planning 19

flier back to Lonya, to try to muster reinforcements, while the other sadly,
has already succumbed to the deadly fire of a Zark pin blaster. Only the
lightning responses of a seasoned fighter like yourself can frustrate the
Zarks' evil plan, by destroying the dam as fast as they build it. You wonder
at the twist of fate that brought you here - the first Lonian to have a flier
fitted with the Mk Ill Brendel/ portable Laser cannon, a weapon capable of
pounding the huge granite mega-bricks into vast, billowing clouds of
incandescent dust.

Now, which game would you prefer to play? A point worth mentioning is
that the story line, while including the obligatory bit of mushy romance, is
completely non-sexist, and non-racist too (unless you happen to know any
Zarks).

If possible give your player the choice of keys, mouse, or joystick control.
There are a number of joystick add-ons now, so try to cater for them. The
makers will be only too pleased to give you software control information. It
is in their interests as much as yours, for new games to be able to use
their hardware.

If you make use of sound, which is almost mandatory these days, it is
essential that your players have the option of turning it off, or even better,
give them full volume control. Complex sound generation algorithms are
probably not a good idea. They tend to be very difficult to develop, needing
a thorough understanding of the sound system at machine level. Such
algorithms tend to be comparatively slow to execute. You are probably
better off using sampled sounds. Most sampler software includes voice
module making capabilities and permission to use these modules in your
own programs.

There's no reason why you shouldn't use public domain routines, sound
samples or pictures in your games, but do make sure they really are PD.
Check with the author. Apart from anything else, there may be a better
version. As a matter of courtesy give acknowledgements for these
routines, and if you have presented your game to distributors make sure
they know about these inclusions.

If you want to be really squeaky clean, close and kill any modules that your
game has loaded, and unset any system variables, File$path, Alias$ and
the like. Delete any system sprites that you've defined. All of this gives
memory back to the desktop task manager. However, don't kill any
modules that you don't own. I was intensely annoyed by a supposedly
desktop compatible game that killed the Memalloc module, causing
another application to crash because having RMEnsured its presence
earlier, the application quite reasonably expected it to be still there.

20 Archimedes Game Maker's Manual

It's doubtful whether anyone is seriously using an unexpanded A305 now,
but there will be an enormous number of A31 Os about and quite a few
unexpanded A3000s. Plan your game to work within 1 Mbyte if at all
possible. This may mean using text compression or multi-part programs
and the like. If you are fortunate enough to have an ARM 3 upgrade, be
especially careful to ensure that your game won't slow down noticeably in
an older ARM 2 machine. Also, if you have the MEMC1 A upgrade, bear in
mind that the older version runs about 10% slower, and these were fitted to
all the older 31 Os and 440s.

Always build a set of cheat routines into your games. The following list is
fairly typical:

O Immortality

O Jump to location/level

o Disable baddies

O Remove baddies

O Slow motion/single step

o Walk through walls

O Undo last move

o Go to game end.

Not only will this help you when debugging, you can make this information
available to reviewers on pre-release copies. If you want to be really nasty,
you can always disable them on final release versions!

2.9 Some Don'ts
Don't use any of the system workspace areas if you can possibly avoid it.
The sizes can't be guaranteed. If you can lump all your memory
requirements together into your application user space, you will know if
there is enough available with a single Wimpslot test in the !Run file.

You should avoid like the plague doing any auto-configuring. There is
always a way round the problem. The most common excuse for the need
to re-configure, is that of screen size. There are three fairly painless
solutions to this. Firstly your game can check the screen size, and if it is
inadequate, abort with an instruction to the player to set the screen size

Early Planning 21

from the task manager. As an alternative, you can instruct him or her on
how to find the MemAlloc module in the !Lander application on the Apps 2
disk. Then explain how to move it over to your disk. This will only have to
be done on one occasion, so is not much of an imposition. Using this your
program can then set the screen, font and RMA sizes as required. Finally,
you may be able to get permission from Acorn to put the module on your
own game disk, with a suitable acknowledgement. Don't assume that you
can though. If in doubt ask.

When your game closes down, don't leave the sound system locked into
your module so that a VDU 7 beep sounds like space invaders' gunfire.
Make sure it restores the sound system to the condition when you started,
re-setting the voices, and cleanly detaching and closing down any sound
modules belonging to your game.

Avoid topical themes for storylines, unless you can get your game
completed and distributed very, very fast. A topical theme will rapidly
become dated, and could seriously shorten its commercial life.

Don't put the name of any other title, software house, programmer or
distributor anywhere in your product without written permission. If your
game is similar to one commercially available take great care that nothing
in it can be taken as a direct comparison with the original. There were an
awful lot of law suits flying around in the early 80s due to rip-off copies of
well known titles. In particular, be careful of computer implementations of
well known board games. Many of these are copyright, and already
licensed to a software house.

Don't make last minute changes to a game you are about to send off for
consideration by a distributor. Be especially wary of invisible time wasters.
I nearly fell foul of this with the star program of Chapter 5. I thought I aught
to add a mouse buffer flush inside the main loop just to be tidy. The result
was that the loop time became too great for one screen refresh, but only
when the star was at the top of the screen. Always therefore, check any
changes very thoroughly, no matter how simple they may seem.

More Planning

3.1 Identifying Major Stages
The secret of managing a large, sophisticated program is not trying to
handle it all at once. If you can't deal with a problem break it down into
smaller problems and keep on doing so until you've got bits that are small
enough to manage. The only real problem then becomes that of deciding
where to start.

All properly designed games can be immediately broken down into three
principal stages:

1 Initialisation
2 Game loop
3 Finalising - Endgame

Initialisation will, of course, involve setting up the framework of the data
structures and loading or defining score-tables and startup values. From
the game player's point of view, it will consist of the title screen,
instructions, and where relevant, the story line.

The game loop is the game proper, where the program spends most of its
time.

Finalising would be concerned with storing any sections of data, like score
tables, that will be used next time the game is played, also ensuring a tidy
exit, preferably to the desktop. From the player's viewpoint, the endgame
would have the closing messages, best score congratulations, or
otherwise.

More Planning 23

As you can see, we've already broken the game down to three much
smaller parts, and we don't even know what it is yet! If we break these down
further we might get something like the following:

1.1 Title screen
1.2 Set up data structures and major game constants
1 .3 Load sprites and other data
1 .4 Storyline
1.5 Instructions
1 .6 Key/Mouse choice
1.7 Continue saved game request

2.1 Start game loop
2.2 Set up game level
2.3 Play level
2.4 Update scores, lives, level
2.5 If loop conditions OK repeat game loop

3.1 Endgame message
3.2 Position save request
3.3 Close program and return to desktop

If you keep breaking the problem down like this you will soon find that you
have it defined almost to program level.

As a point of interest you will see that I've put the bulk of the true initialising
after the title screen, but before the rest of the program. This fools players
by giving them something to look at so that they don't realise how long the
game takes to set up.

When you get down to the level of the main game loop itself, start off by
listing every action that takes place in the loop. Don't worry about the order
at first, the main thing is to make sure you've not omitted anything. Once
you have the list, you can then begin to sort out which actions are
dependent on others, and get the ordering right with the appropriate tests.
The list below is fairly typical for an arcade game.

Check key press
Check mouse
Move player object
Move enemy object(s)
Move missile(s)
Check collisions
Destroy objects
Create objects
Check time

24 Archimedes Game Maker's Manual

Obviously not all operations will be taking place at the same time, so you
can start by positioning those actions that have to take place every pass.
These are highlighted in bold in the example above. This will form the
framework that everything else hangs on, hence the importance of making
sure you don't omit anything at this stage. Notice that the collision check
has to be made every pass to allow for any possible movement, or creation
of new objects. Below is yet another fairly typical list. This one is for a
draughts game and is in pseudo code form.

Game loop start
Identify which player to move
If computer move then

Calculate best move
Else

Accept player input
Validate move

End If
Make move
Check for game end

Repeat Game loop

The precise method you use to formulate your ideas and get them down
on paper, isn't, in fact, too important. The important points are that, at a
later date, you understand what you have written, and that the notes assist
you in clarifying your thinking.

3.2 Data Structures
It should be around this point that you start to think about the variables you
are going to use. You will probably be manipulating a lot of data in the
body of your game, and you will need to work out what form, or structure
that data should have. Where you have groups of objects or characters, it
is almost inevitable that you will eventually decide to use an array of some
sort to contain this data, with a FOR-NEXT index variable picking off
individual items. With the powerful array and matrix arithmetic available in
Basic V, arrays become particularly attractive for manipulating related data
such as three dimensional vectors.

Names are of course most obviously held in strings or string arrays, but
numeric values are less obvious. As a general rule integer arrays will
usually be most practical. If your game plan seems to need an array of real
numbers you should look again, as you may be using unnecessary
precision . Bear in mind that in Mode 13 for example, pixel size is four
graphics units, both X and Y, so for drawing purposes you don't even need
integer accuracy. Apart from this, you can increase your integer accuracy

More Planning 25

sometimes, by using the Basic barrel shifting operations to multiply up by,
for example, 1024 while performing calculations, then shifting back down
again afterwards for your actual results.

Where you are expecting a fair amount of ARM code mixed with ordinary
Basic, it will probably turn out that the most efficient structures are word
aligned blocks of memory. These can be accessed directly as double
words in ARM code and as indirected integers in Basic. Indices are simply
barrel shifted to get the correct address as shown in the fragments below.

Basic

N%=array%! (index%<<2)

ARM code

LDR RO, [Rl,R2,LSL#2]
; Rl contains the array address R2 contains the index

It is sometimes best to think of all the individual data structures as a whole
entity. Ask yourself whether there are repeating types that can be usefully
combined and handled by common procedures or functions. If, for
example, you are working on an adventure it might be wise to treat all the
data relating to the characters as a single structure. If you call this
structure an object, you can define a set of procedures to handle it.
Internally they can be quite complex with all the separate arrays handled in
appropriate loops. To the rest of the program they are simply closed boxes
with just an object number being passed in, possibly with some information
being returned. Those of you familiar with other languages will probably
recognise this as a primitive record type.

Whatever structures you finally settle on, it is well worthwhile leaving spare
elements. There is a good chance that later enhancements, or final
trimming of the game, can use these to good effect and you can then slot
in the modifications with minimal disturbance to the rest of the program.

3.3 Layouts
If your game is to really attract, it is vital that you get the layout right. This
is something that you will need to decide quite early and spend a fair
amount of time on. To start off, just make outline sketches on paper. It is
quite tempting to use !Draw or an art package of some sort for this, but
unless you are exceptionally good at handling them, they will only slow you
down at this stage, so you are better off sticking to pencil and paper.

26 Archimedes Game Maker's Manual

3.3.1 Positioning

Usually, with fast action games, it helps to keep the peak activity slightly
below the centre of the play area. The slower the game the more you can
afford to spread the action out, without your player losing control.

In most arcade style games the play area is reduced and various bits of
relatively static information are put on borders and panels round the edges.
Where you need to do this you must be very careful about where on the
screen, you put the information. Figure 3.1 shows the most common
arrangements for a wide range of games. I've only shown the bare bones
of the layout. There would of course be far more information in most
games along with static detail in the borders, to make the overall
appearance more attractive.

Level

Fuel

Lives

Time

Play Area

Lives

Fuel

Play Arca

Fuel

Time
Level

Figure 3. 1: Screen layouts

F
u
e
I

L
c
v
e
I

Play Area

Time

F
u
e
1

L
i
v
e

Play Arca s

T
i
m
e

Lives

Level

Lives

T

Play Area
m
e

Level

More Planning 27

Your player can only really concentrate on one or two areas at the same
time, so the one I suggest for most fast games is layout 4. Here you have
all the vital information directly under the main game play area, and your
player's peripheral vision should be able to pick up the less important stuff
either side of this, without any difficulty.

Layout 5 is the worst possible. Having such a spread of information all
round the edges of the screen will distract your players, without giving
them any real chance of assimilating the information. This will destroy what
might otherwise be a good game due to player fatigue. The very last thing
you want!

3.3.2 Proportions ·

The proportions of the different areas of the screen is also important. You
will notice how different each of the drawings of Figure 3.1 look, although
they contain essentially the same information, and have very similar play
areas. As a general rule, rectangular outlines look better than square ones,
although this is partly determined by the contents of each area. Drawing 2
would only really look good in either a vertically scrolling game, or if very
large circular objects were involved. Wher~ practical you should try to
produce rectangles with height-width ratios as close as possible to 1 .6 : 1 .
Artists will recognise this as an approximation of the golden ratio. I confess
that don't know the reason why, but it just so happens that these
proportions are generally regarded as most pleasing to the eye.

3.3.3 Novelties

A few games use the entire screen as the playing area, so with these it is
only the action that you need to concentrate on while in the play mode.
Even so, you should give thought to the layout of score tables and
message screens that appear at the end of each level. A simple Game
Over splashed across the middle of the screen looks very amateurish, but
is still surprisingly common.

It's a good idea to consider novelties, like the player's character slowly
sliding down the screen, or disintegrating. You could make the background
fade out, or if you have some of the PD screen fade and dither routines,
use these. Try having a different end to each level.

Score tables in particular, can be very static and boring. You can liven
them up considerably with a bit of animation. A few of the game sprites
running round the edge is one possibility. Or you can have a sequence
where the words and letters are being continuously dragged into place by
the goodies, only to be shot up by the baddies.

28 Archimedes Game Maker's Manual

3.4 Preliminary Testing
Before you develop your game too far you will need to check that the
overall idea is really viable. The only practical way for doing this is to write
as much of the essential parts as possible, with dummy values and
deliberate time delaying calculations, so as to reproduce the real game as
near as possible,.

As you don't want to waste a igt of time with this, you should just grab
random bits of screen for sprites. It is their size and screen mode that is
most important, not their content. Similarly, you can use a procedure or ·
function to read key presses and mouse clicks, without actually doing
anything with the results.

In this way you can quickly establish whether you are likely to have a lot of
trouble with your game concept. If you find you are getting bogged down
trying to track down a host of irritating but seemingly minor bugs, you
shouldn't be afraid to scrap the program completely. But retain the game
idea, take a deep breath and try again with different data structures,
screen layouts and control procedures. A thought to keep in mind is that, if
it's getting complicated, you're probably doing it wrong. Unfortunately you
may find your game isn't viable at all. I'm sure you'll agree that it's better to
find this out sooner rather than later.

3.5 Time and Memory
Although the Archimedes is fast, there is still a real need to keep time
consuming operations as compact as possible. This usually means some
sacrifice in readability. Without getting too cryptic you should reduce
variable and procedure names to the minimum readable.

3.5.1 Improving loops

Oddly enough, you can actually make significant speed improvements by
increasing the number of variables. The two rather contrived FOR-NEXT
loops below do exactly the same job, but the second version works up to
20% faster. This is because there are fewer calculations inside the loop.
The more passes there are through the loop, and the more complex the
calculations, the greater the difference becomes. For the loops shown,
assume that a%, b%, c%, d%, e% and num%() have been defined in some
other part of the program.

More Planning

FOR I%=a%*b% TO c%*d% STEP a%*b%
e%+=num%(c%*d%-a%*b%)

NEXT
X%=a%*b%
Y%=c%*d%
Z%=Y%-X%
FOR I%=X% TO Y% STEP X%

e%+=num%(Z%)
NEXT

29

Where you have a choice of loop constructions, write a small program to
time these loops with various actions inside them. Make sure you've
balanced the most frequently repeated actions against the most complex
ones when you do your timings.

3.5.2 Subroutines

Generally procedures operate faster than functions, as the latter always
return a result. Also, passing parameters in procedures and functions
although desirable for clear, bug free programming, is highly time
consuming. This is particularly true when using the RETURN keyword in
procedures so that they can pass values back. Therefore, particularly
inside fast repeating loops, it is better to plan your data structures so that
you use the minimum of parameter passing, and as few local variables as
possible. A sensible range of global variables will prove to be far more
efficient. It is most important though that you document these properly so
that you don't try to use the same variable twice.

It is very rare these days for GOTO or GOSUB to be practical. If the
program is of any size, and the lines identified are well into the program,
then these commands will operate relatively slowly. There is only a speed
advantage if the lines are very close to the beginning of the program, as
few lines will need to be stepped through.

3.5.3 Faster printing

Experience shows that it is often worthwhile experimenting with small
sections of a program as a matter of course, to see how the efficiency can
be tightened up. The results can be quite surprising. Of the two lines
below, it is the second that runs faster - about twice as fast actually.

IF A%=4 THEN PRINT TAB(O,S)"Done"
IF A%=4 PRINT TAB(O,S)"Done";

There are two reasons for this. The first is that, in the second line, the
Basic interpreter will assume the keyword THEN, faster than it can actually
decode it in the first line. The second factor, which is even more significant,

30 Archimedes Game Maker's Manual

is that the semicolon suppresses the newline normally produced by PRINT.
This newline requires the sending of two characters through the VDU
drivers, so the shorter the print string, the more significant this becomes.
Where A% has any value other than 4 there is much less difference in
speed.

If you have a commonly repeated group of colour change, tab and string
printing, combine -the commands in a single print string using the direct
VDU equivalents for the commands. This should be done in your
initialisation, then when wanted the string is printed with a single short
statement. The two extremes are shown below.

VDU4

COLOURS
PRINT TAB(lS,O)"Score = "·
VDUS

a$=CHR$4+CHR$17+CHR$5+CHR$3l+CHR$15+CHR$0+"Score = "+CHR$5
PRINTa$;

3.5.4 Arithmetic variations

Mathematical calculations can produce quite a few surprises. Of the two
lines below, the second will execute 20% to 30% faster while producing
exactly the same result. This is because it only has to use a simply multiply
instruction, while the first line has to be handled by a complex power
calculating algorithm.

A%=B%"2
A%=B%*B%

3.5.5 Decision ordering

Try to arrange IF-THEN-ELSE constructions so the first choice is the most
frequently selected and, where practical, use the single line version rather
than the block structured one that spreads over several lines. Also where
you have rarely realised IF conditions with ANDs it is much better to use
the combination of stacked IFs. The two arrangements are shown below.

IF seldom% AND sometimes% AND often% PROCsomethinq
IF seldom% : IF sometimes% : IF often% PROCsomethinq

With the latter example, if seldom% is FALSE, the rest of the line won't be
evaluated at all. This can make a dramatic improvement in speed.

Where memory is more important than speed, such as for strings of
instructions, use a simple loop that reads lines of data. On the other hand,

More Planning 31

if speed is more importa.nt, then, in your initialising, read the data into an
array. Each item will now be instantly accessible by its array index. You
can sometimes get the best of both worlds by storing the data on file and
reading it in at the start of the game, re-reading it on any restarts if
necessary.

3.5.6 Data

Where you are reading data, place the data immediately after the routine
that reads it and use RESTORE+n, where n is the number of lines between
the RESTORE line and the first line of data to be read. In a large program
this is very much faster than restoring to an absolute line number. You
should also put the data immediately after the ENDPROC of the reading
procedure, not before it. In this way no processor time is lost stepping
through data lines.

3.5. 7 Look-up tables

A common method of increasing speed at the cost of memory is the use of
look-up tables. This is particularly useful for things like vector calculations.
For example, you can easily build up a table of sine values, keeping in mind
the fact that, in most cases you only need to plot to an accuracy of four
graphic units. Taking values from this table will be dramatically faster than
using any other method. Don't forget that you only need to cover the first
quadrant, and that the sine table, looked at from the other end, is of course
a cosine table.

Almost any series of calculations can be put into look-up tables. This could
be screen addresses, sprite locations and sizes, bounce directions, and
even, in a simulator, equivalent prices for goods exchange. The list is
limited only by your imagination, and the memory available. The deciding
factors are, whether the data can be ordered and indexed, and whether
there will be sufficient speed improvement to justify the memory usage.

3.5.8 Screen handling

Having high resolution 256 colours graphic modes, is inclined to tempt you
to use them regardless. There is a considerable processor time overhead
with these modes, as well as the problem of swallowing up large chunks of
valuable memory. You should work out just how many colours you really
need, remembering that in say, Mode 12, all 16 colours can be redefined in
fractional amounts of red, green and blue. Also, a game often looks better if
the screen pixels are square. The higher resolution modes have very
squashed pixels.

32 Archimedes Game Maker's Manual

Changing screen modes can produce other useful benefits. When working in
lower screen modes , sprites take up less memory and execute faster. Sprite
plotting can often present speed problems so two other ideas worth
considering are reducing the number of sprites plotted at any time, and
reducing the size of sprites, as smaller sprites can be plotted faster.

If you are using a lot of saved screens , you will almost certainly have to
consider using screen compression techniques . Simple run-length encoding
is often adequate, particularly on cartoon style graphics, and may give you
three to four times the number of screens on the disk. The screen loading is
also likely to be considerably faster too. On the other hand, there are a
number of quite different screen compressors in PD libraries. It may pay you
to try out several to see which is most efficient for your needs. You may
even be able to benefit by combining two different techniques.

3.5.9 A last twiddle

A neat way of making quite a significant speed increase is with a simple call
to the memory controller as below. This will make up to a 20% speed
improvement in Basic programs, although it seems to have little effect with
an ARM 3 processor, which is already several times faster anyway.

SYS "OS_UpdateMEMC",64,64

strongly advise you to use the corresponding call to restore things to
normal afterwards, as playing with the operating system like this can do
strange things to applications or modules that don't expect it. For the same
reason it it as well not to use it in multi-tasking games. The restoring call is :

SYS "OS_UpdateMEMC",0 , 64

3.6 Alternative Strategies
Unfortunately there are times when your game idea simply can't fit into the
limitations imposed by the hardware. By far the commonest problem is,
again, that of speed. Apart from abandoning the game altogether, the only
action you can take is to look at different solutions to the same problem. For
example, in the chapter on graphics there are two main methods of collision
detection. If you read through, you will see that each method has its
strengths and weaknesses. You may find that your first choice was the
wrong one, in which case a change to the other might solve your problems.

More Planning 33

3.6.1 Flags

One way that you can often make improvements is by keeping flags to
identify changes in data that may require re-calculations to be performed.
This is particularly relevant with three dimensional drawn objects. If only
one object is moving, but you re-calculate all points of all objects before
plotting, you will waste a great deal of time performing complex and
unnecessary trigonometrical calculations. If, on the other hand, you keep a
set of flags for each object identifying any changes, only the objects that
have moved or rotated need to be adjusted. In real terms this will mean
that for the same running speed you may be able to double or triple the
number of drawn objects in a scene.

y:
; r2 '1
: 1a
"- - - _, _ - - - - -

x
-x

x=rl y=rl 2

3

4

Figure 3.2: Building a star

3.6.2 Simplifying

Any change that simplifies calculations is beneficial, particularly if a
complex expression can be replaced with an algorithm that uses simple
addition and subtraction. A trivial example of this is shown in Figure 3.2.
The obvious first choice for drawing a star is to calculate on the basis of

34 Archimedes Game Maker's Manual

two concentric circles, as in the first drawing. However, in this special case
of a four pointed star, it is much simpler to use the steps shown in
drawings 1 to 4. Only one point has to be calculated, and even that is a
simple piece of Pythagoras. From then on, every new point can be found
simply by reversing the sign of x, y or a.

There are many other shapes that can be synthesised without the need for
time consuming trigonometrical calculations. However, lateral thinking can
be applied like this to many other areas to give you a new, possibly better
approach. Hit-and-go situations are particularly amenable to alternative
treatments.

3.6.3 Advance calculations

Let's say you have a 30 drawn missile that you want to fire off realistically
at a target in a tank battle simulation. Your first thought would probably be
to calculate all the points of the drawing in real time. This could turn out to
be a major undertaking, if you hope to get smooth movement. One
possible solution would be to pre-calculate the action, and drop the values
into a large array ready for plotting.

3.6.3 Interleaving

With some care you can make your game continuously re-calculate while
the player is adjusting gun attitude, tank speed and so on. Your player
knows that in real life, you can 't instantly swing a heavy tank turret round
at right angles, so the time taken to re-calculate can be readily absorbed
by interleaving it with an animated sequence involving the movement of
the tank. When the player hits the fire button, the missile will smoothly
follow its trajectory. A bonus, is that with the final point of the trajectory
known in advance, it may be possible to pre-calculate collisions as well.

If you really want the icing on the cake, you can step through the missile
firing routine, interleaved with the whole of the action, and the partial
calculation for the next missile. All of this is an excursion into investigating
processor redundancy. This can often be put to good use.

3. 7 Time Sharing
The greatest waste of time in any game is when the computer is waiting for
player input. Often this is done with a simple G%=GET or the like. The
computer will wait forever, doing nothing until a key is pressed. This is a
waste, as your program could be building up the next level on a shadow
screen, running a simulator of some kind in real time, or possibly just

More Planning 35

animating a few beasties round the screen. One way of doing this is shown
below:

mark%=0
REPEAT

G%=INKEY 1
MOUSE X%,Y%,B%
IF mark%<count% PROCbuild
PROCanimate

UNTIL G%=32 OR B%>0:REM spacebar or mouse button
REM print acceptance message
IF mark%<count% THEN

FOR !%=mark% TO count%
PROCbuild

NEXT
END IF
REM rest of program
END
DEF PROCbuild

REM build one object
mark%+=1

ENDPROC
DEF PROCanimate

REM move one beastie
ENDPROC

You will have to ensure that any routines you use for building your next
screen can work in very short time bursts, in the same way that WIMP
programs do, otherwise there may be an unacceptable delay in key
response. Also, notice that I've included a loop after the input routine that
finishes any of the building that wasn't completed in time. Again, this could
be interleaved with other activities.

Some other aspects of time sharing and interleaving of animation with
object movements are covered later in the book.

Static Graphics
As was discussed earlier, most modern games are of a highly graphical
nature so, to compete effectively with commercial games, you need to
have a clear understanding of what the Archimedes is capable of. In this
chapter we will look at most of the general aspects of manipulating the
screen, and a variety of different ways in which you can apply the graphic
commands available. I strongly recommend that you regularly look at the
odd bits and pieces pages that most of the Archimedes and BBC B
magazines carry. There are often excellent little routines in them, and
although the exact program segment is copyright to the magazine,
publication has effectively put the concept itself into the public domain, so
your can quite safely use your own special version.

4.1 Drawn Pictures
It's probable that you have already experimented with !Draw on the Apps 1
disk supplied with your machine, and therefore have an idea of the kind of
drawing possible and the drawing speed. It is, in fact, possible to use draw
files directly if you understand their format, but that is rather beyond the
scope of this book. Instead we will restrict ourselves to handling the
drawing primitives directly from Basic. The actual commands available are
well described in the BBC Basic guide. What isn't so clear though, is the
way you can combine the different drawing modes to the best effect.

Static Graphics 37

In the first place you should plan any drawing you intend to do in such a
way that you have groups of clearly defined objects, each consisting of a
number of lines, circles, or whatever. It is often practical to use absolute
coordinates for only the first point of each such object, then relative
coordinates for all the parts within that object. If you include a scaling
variable, you can then have multiple copies of any drawn object, anywhere
on the screen. This is the basis for some of the most impressive cartoon
style pictures. Listing 4.1 is just an outline of how this can be done.

Listing 4. 1: Drawing program

10 REM > Draw
20
30 MODE 13
40 OFF
50 GCOL %111110+128
60 CLG
70 GCOL %011101
80 RECTANGLE FILL 0,320,1280,320
90 GCOL %001000

100 RECTANGLE FILL 0,0,1280,320
110 PR0Cbird(300,900,10)
120 PR0Cbird(500,850,8)
130 PROCbird(650,800,6)
140 PR0Cbird(740,780,4)
150 PR0Ctree(200,600,3)
160 PR0Ctree(150,570,4)
170 PROCtree(250,570,4)
180 PR0Ctree(200,500,6)
190 PROCtree(l00,420,10)
200 PR0Ctree(300,420,10)
210 X%=RND(-43)
220 FOR X%=4 TO 1280 STEP 28
230 PR0Crock(X%,320+RND(8),RND(3)+1)
240 NEXT
250 FOR X%=4 TO 1280 STEP 58
260 PR0Crock(X%,280+RND(32),RND(4)+2)
270 NEXT
280 FOR X%=4 TO 1280 STEP 90
290 PR0Crock(X%,200+RND(64),RND(5)+4)
300 NEXT
310 FOR X%=4 TO 1280 STEP 220
320 PROCrock(X%,50+RND(l28),RND(l0)+16)
330 NEXT
340 PROCtree(l200,0,60)
350 END
360
370 DEF PR0Cbird(x%,y%,s%)
380 GCOL %111111 TINT&CO

38

390 IF s%>7 THEN
400 CIRCLE FILL x%,y%,s%
410 MOVE BY s%*3,0
420 ELSE
430 MOVE x%,y%
440 ENDIF
450 MOVE BY s%*4,s%*2
460 PLOT&Al,-s%*8,-s%*2
470 MOVE BY-s%*4,0
480 MOVE BY s%*4,0
490 PLOT&Al,-s%*8,s%*2
500 ENDPROC
510
520 DEF PROCtree(x%,y%,s%)
530 GCOL %000110 TINT 0
540 RECTANGLE FILL x%,y%,s%*4,s%*4
550 GCOL %000100
560 MOVE BY -s%*10,0
570 MOVE BY s%*16,0
580 PLOT&51,-s%*8,s%*8
590 GCOL %000100 TINT &40
600 MOVE BY -s%*7,-s%*5
610 MOVE BY s%*14,0
620 PLOT&51,-s%*7,s%*7
630 GCOL %000100 TINT &80
640 MOVE BY -s%*6,-s%*4.5
650 MOVE BY s%*12,0
660 PLOT&51,-s%*6,s%*6
670 GCOL %000100 TINT &CO
680 MOVE BY -s%*5,-s%*4
690 MOVE BY s%*10,0
700 PLOT&51,-s%*5,s%*5
710 ENDPROC
720
730 DEF PR0Crock(x%,y%,s%)
740 GCOL %101010 TINT &CO
750 MOVE x%,y%
760 MOVE BY s%*4,-s%*2
770 PLOT&71,s%*3,s%
780 GCOL %101010 TINT &40
790 PLOT&51,s%*2,-s%*2
800 GCOL %010101 TINT &CO
810 MOVE BY -s%*7,-s%
820 PLOT&51,s%*2,s%*2
830 GCOL %10101 TINT &40
840 PLOT&71,-s%*4,s%*2
850 ENDPROC

Archimedes Game Maker's Manual

As the drawing is being done in a 256 colour mode, colours have been
selected using binary notation . This has only been done to make the red,
green and blue components easier to see. The form in bits is bbggrr, giving

Static Graphics 39

you just four levels of the three primary colours. Once you are sure that
you have everything as you want it, you can easily convert these figures to
ordinary decimal notation if memory or speed is at all critical.

Similarly tints have been shown in hexadecimal for clarity. The only tint
values currently valid are 0, &40, &~O, &CO. Later versions of Rise Os may
allow more steps. A small point he e that is easily overlooked, is that tints
retain the value they were last set at when you change colours, so never
assume any tint level. If you use tints at all, always set the level explicitly at
the start of each drawing module.

The plot commands in the dray.ring modules have been shown in
hexadecimal, again for clarity. Th~ first digit is the plot type, such as
triangle, circle and so on, and the recond digit is the plotting mode, such
as absolute, relative and inverse.

The objects I've chosen are rathrr crude, but with ingenuity you can
produce a wide range of drawn screens with very little data required for
each. Just put all the objects you want drawn into a case statement and
then set up lists of object numbers, positions and sizes, in arrays or lines
of data.

You will notice, particularly with the rock drawing, that I have taken pains to
make use of the fact that the VDU drivers retain the positions of the
previous two points visited by the graphics cursor. If you plan your drawing
out on paper first, you can use this technique to reduce considerably the
number of MOVE statements needed and so speed up the drawing
process.

When building up filled objects that can be constructed in several different
ways, remember that the speed of drawing the basic shapes varies quite a
lot. In order, fastest to slowest they are:

O Rectangle

OTriangle;

O Parallelogram

OCircle

o Ellipse.

40 Archimedes Game Maker's Manual

4.2 Sprites
The drawing methods covered so far are fine for many applications but
where real speed is necessary, as in the active part of an arcade game,
they are still hopelessly slow. The answer then is to use sprite graphics.
Sprites can be taken from pre-defined files, constructed from data, or built
up by using drawn graphics and grabbing an area of screen enclosing the
drawing. By far the best method is to a load pre-defined sprite file. This
can be created initially in !Paint, or from one of the many art packages. Or,
as an alternative, you can write a small sprite creation program that sends
the sprites to file once they have all been created using the drawing
primitives.

There is virtually no limit to the number of user sprites you can define.
Obviously you can't handle too many at one time, and the larger the
sprites, the more memory they take up and the more slowly they will be
handled. So when creating moving scenes, you should be concentrating on
giving the impression of a lot of activity, rather than actual activity.

4.2.1 User sprites

Although it may seem easiest to use so-called system sprites, there is little
space for them. They generally run more slowly, and you actually have
less control over them. With this in mind, and Acorn's own advice, all my
examples are with user sprites, where the sprite storage area is in normal
Ram, available to the program. User sprites are not only more versatile,
but enable you to assess correctly the memory space required without the
need for desktop sprite area testing. If you handle them by their memory
address rather than their names they are even faster in execution.

4.2.2 Sprite masking

One of the features of Acorn's sprite system is that you have a choice as
to whether you want a mask or not. Non-masked sprites are significantly
faster than their masked counterparts, but suffer a disadvantage in that
they always set the rectangular area enclosing the sprite to the
background colour that was effective when the sprite was made. Masked
sprites appear to sit on top of whatever the current background is, as the
sprite's own background is rendered transparent.

4.2.3 Sprite control

Acorn's sprite handling may seem poor compared with some other
systems, in that there are no dedicated routines for animation or collision

Static Graphics 41

detection. You will have to build these up yourself. On the other hand you
do have considerable independence of screen mode, and the ability to
modify sprites quite quickly, pixel by pixel, if need be. You can also plot
them in a different size and proportion to that at their creation. Scaled
sprites are very much slower though, so you shouldn't use them unless
your really need to.

4.2.4 A sprite example

In Listing 4.2 you can see how best to set up sprite handling from scratch.
Notice how no assumptions are made and OS calls are used liberally to
declare areas and find sizes and addresses. The result is that, colours
permitting, the routines will work in any screen mode without any change
to the scale or proportions of the sprites. There is quite a lot you'll have to
take 'as is' unfortunately, as there simply isn't the space to go into all the
details. You 'd need to examine the Programmers' Reference Manual if you
want to learn just how the whole of the sprite system works.

Listing 4.2: Sprite handling

10 REM > Rocks
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCsprites
60 OFF
70 GCOL %100000+128
80 REPEAT
90 CLG

100 FOR I%=0 TO 20
110 PROCdisplay(rock%,RND(llOO),RND(900),RND(3),RND(3),RND(S),RN

D(5))
120 NEXT
130 PRINT TAB(25,ll) "Press a key - Return to stop";
140 UNTIL INKEY500=13
150 END
160 :
170 DEF PROCerror
180 MODE 12
190 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
200 ENDPROC
210 :
220 DEF PROCinitialise
230 MODE 15
240 PRINT TAB(30,ll)"Please Wait"
250 SYS "OS_SWINumberFromStrinq",,"OS_SpriteOp" TO sprite%
260 DIM block% 19
270 block%!0=4

42

280 block%!4=5
290 block%!8=-l

Archimedes Game Maker's Manual

300 SYS "OS_ReadVduVariables",block%,block%+12
310 xeiq%=block%!12
320 yeiq%=block%!16
330 size%=&2000
340 DIM area% size%
350 area%!0=size%
360 area%!4=0
370 area%!8=16
380 DIM scale% 15
390 scalel!s!O=l
400 scale%!4=1
410 scale%!8=1
420 scale%!12=1
430 init%=256+9
440 def%=256+15
450 select%=256+24
460 mask%=512+29
470 qetpix%=512+41
480 putpix%=512+44
490

:REM to put pixels in sprite itself use 512+42
:REM then add ,colour%,tint% to end of call

500 plot%=512+52
510

:REM for non-scaled use 512+34 - much faster
:REM then omit all reference to scale%

520 writeto%=256+60
530 style%=8 :REM use 0 for non-masked & omit PROCmasksprite
540 SYS sprite%,init%,area%
550 ENDPROC
560
570 DEF PROCsprites
580 LOCAL x%,y%
590 x%=202
600 y%=112
610 rock%=FNdefsprite("rock",x%,y%)
620 PR0Crock(x%,y%)
630 PR0Cmasksprite(rock%,x%,y%)
640 SYS sprite%,writeto%,area%,O
650 ENDPROC
660
670 DEF FNdefsprite(a$,x%,y%)
680 LOCAL add%
690 x%=x%>>xeiq%
700 y%-=y%»yeiq%

:REM repeated
:REM for
:REM each probably better to use
:REM sprite an array for multiple
:REM defined sprite addresses

710 SYS sprite%,def%,area%,a$,0,x%,y%,MODE
720 SYS sprite%,writeto%,area%,a$
730 SYS sprite%,select%,area%,a$ TO ,,add%
740 =add%
750
760 DEF PROCrock(x%,y%)
770 GCOL %101010 TINT &CO
780 xl!s=xl!s DIV 11
790 yl!s=yl!s DIV 5

Static Graphics

800 MOVE x%*2,y%*4
810 MOVE BY x%*4,-y%*2
820 PLOT&71,x%*3,y%
830 GCOL %101010 TINT &40
840 PLOT&51,x%*2,-y%*2
850 GCOL %010101 TINT &CO
860 MOVE BY -x%*7,-y%
870 PLOT&51,x%*2,y%*2
880 GCOL %10101 TINT &40
890 PLOT&71,-x%*4,y%*2
900 ENDPROC
910 :
920 DEF PR0Cmasksprite(add%,x%,y%)
930 LOCAL I%,J%,c%
940 x%=x%>>xeig%
950 y%=y%>>yeig%
960 SYS sprite%,mask%,area%,add%
970 FOR J%=0 TO y%-1
980 FOR I%=0 TO x%-1
990 SYS sprite%,getpix%,area%,add%,I%,J% TO,,,,,c%

1000 IF c%=0 SYS sprite%,putpix%,area%,add%,I%,J%
1010 NEXT
1020 NEXT
1030 ENDPROC
1040
1050 DEF PROCdisplay(add%,x%,y%,scale%!0,scale%!4,scale%!8,scale%!12)
1060 SYS sprite%,plot%,area%,add%,x%,y%,style%,scale%
1070 ENDPROC

43

The method used to produce the sprite, is to define a blank one to the
correct size, then make the VDU drivers draw inside this instead of the
screen, and finally restore normal VDU action. This is much neater, albeit
marginally more complicated, than grabbing a sprite directly from the
screen. Your players would think the game decidedly tatty if they had to
watch a procession of objects being drawn while the sprites were being
created.

The first OS call in the initialising procedure is just a very useful method of
finding the internal number of the OS_SpriteOp call. As a variable, sprite%,
it then operates much faster than the string form. The next call is used to
find the relationship between actual pixels and normal graphic units. This
ensures mode independent, consistent and relatively easy positioning of
drawn objects within sprites. The last call initialises the area of memory set
aside, as a valid sprite area.

In PROCdefsprite, the first call creates an empty sprite, and the second
redirects VDU output to it. The last call finds the address of the sprite, so
that all subsequent calls can use this instead of the rather slower name
string.

44 Archimedes Game Maker's Manual

In PROCmasksprite the first call sets up a blank mask for the sprite, with
all bits set. Next, pairs of calls test each pixel of the sprite, and if it is the
background colour, the corresponding mask bit is cleared. You can use a
variant of this to actually build up sprites one pixel at a time, instead of
drawing to them. This can be very useful for modifying a sprite after it has
been created. You may want to do this half-way through a game to show
damage to a sprite object that is being fired at.

Finally, after all sprites have been defined, only one in our example,
another redirection call is made in PROCsprites to restore VDU writing to
the screen. If you had several sprites to define you would repeatedly
create empty sprites, redirect output to them, draw in them and create their
masks.

Unfortunately Rise Os turns the cursor back on after VDU output has been
re-directed, so it is necessary to use a second OFF command after all the
sprites have been defined.

The actual sprite drawing is done by the call in PROCdisplay. For scaling
the sprite, the multiplication and division factors are dropped directly into
the small data block scale% as the procedure is entered.

To see how useful it is to lock all the dimensions and scaling together, you
can change the screen mode very easily to Mode 13. All you need to do is
change one line - the one that sets the screen mode itself. Everything else
will be correctly adjusted, and although the resolution won't be as good,
the overall sizes will be identical.

4.3 User Defined Characters
Rise Os still supports the older 8 x 8 grid, user-defined graphics found in
almost all 8-bit computers. Although limited in scope they are still useful for
building up highly repetitive patterned backgrounds. Listing 4.3 produces a
variety of striking backgrounds with very little code, even though this has
been expanded to make it as clear as possible.

---'Listing 4.3: User defined characters

10 REM > UDCs
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 :

60 COLOUR %101011+128
70 COLOUR %001111

Static Graphics

80 FOR I%=1 TO 8
90 PRINT TAB(l, !%)

100 NEXT
110
120 COLOUR %111111
130 COLOUR %001100+128
140 FOR I%=1 TO 8
150 PRINT TAB(21, !%)
160 NEXT
170
180 COLOUR %000000+128
190 COLOUR %111111
200 FOR I%=10 TO 16
210 PRINT TAB (1, I%)
220 NEXT
230
240 COLOUR %111100
250 COLOUR %000011+128
260 FOR !%=10 TO 16
270 PRINT TAB(21, !%)
280 NEXT
290
300 COLOUR %000010
310 COLOUR %101111+128
320 FOR I%=9 TO 11
330 PRINT TAB(O,I%*2)

35+CHR$134)
340 NEXT
350
360 COLOUR %100000
370 COLOUR %001011+128
380 FOR I%=12 TO 14

STRING$(18,CHR$128)

STRING$(18,CHR$129)

STRING$(18,CHR$132)

STRING$(18,CHR$133)

STRING$(20,CHR$134+CHR$135) STRING$(20,CHR$1

390 PRINT TAB(O,I%*2+1) STRING$(20,CBR$136+CHR$137) STRING$(20,CBR
$138+CHR$139);

400 NEXT
410 PROCtidy
420 END
430
440
450 DEF PROCerror
460 PROCtidy
470 PRINT REPORT$ " @ II ; ERL;

480 ENDPROC
490
500 DEF PROCtidy
510 COLOUR %111111
520 COLOUR %000000+128
530 PRINT TAB (0, 2 9) ;
540 ENDPROC
550
560 DEF PROCinitialise
570 MODE 13

45

46 Archimedes Game Maker's Manual

580 OFF
590 VDU 23,128
600 VDU%01111000
610 VDU%01110111
620 VDU%10110111
630 VDU%11001111
640 VDU%11001111
650 VDU%10110111
660 VDU%01110111
670 VDU%01111000
680
690 VDU 23,129
700 VDU%00000000
710 VDU%01111000
720 VDU%00110000
730 VDU%01111000
740 VDU%00000000
750 VDU%11000011
760 VDU%10000001
770 VDU%11000011
780
790 VDU 23,132
800 VDU%00000001
810 VDU%00000010
820 VDU%00000100
830 VDU%00001000
840 VDU%00011000
850 VDU%00100100
860 VDU%01000010
870 VDU%10000001
880
890 VDU 23,133
900 VDU%01000000
910 VDU%01000000
920 VDU%01000000
930 VDU%01111100
940 VDU%00000100
950 VDU%00000100
960 VDU%00000100
970 VDU%00000100
980
990 VDU 23,134

1000 VDU%00000000
1010 VDU%01111111
1020 VDU%01111111
1030 VDU%01111111
1040 VDU%01111111
1050 VDU%01111111
1060 VDU%01111111
1070 VDU%00000000
1080 VDU 23 , 135
1090 VDU%00000000

Static Graphics 47

1100 VDU%11111110
1110 VDU%11111110
1120 VDU%11111110
1130 VDU%11111110
1140 VDU%11111110
1150 VDU%11111110
1160 VDU%00000000
1170
1180 VDU 23,136
1190 VDU%10000000
1200 VDU%10000000
1210 VDU%10000000
1220 VDU%10000000
1230 VDU%01000000
1240 VDU%00100000
1250 VDU%00011111
1260 VDU%00000010
1270 VDU 23,137
1280 VDU%00001111
1290 VDU%00010000
1300 VDU%00100000
1310 VDU%01000000
1320 VDU%01000000
1330 VDU%01000000
1340 VDU%11000000
1350 VDU%01000000
1360 VDU 23,138
1370 VDU%00000010
1380 VDU%00000011
1390 VDU%00000010
1400 VDU%00000010
1410 VDU%00000010
1420 VDU%00000100
1430 VDU%00001000
1440 VDU%11110000
1450 VDU 23,139
1460 VDU%01000000
1470 VDU%11111000
1480 VDU%00000100
1490 VDU%00000010
1500 VDU%00000001
1510 VDU%00000001
1520 VDU%00000001
1530 VDU%00000001
1540
1550 COLOUR %100000+128
1560 CLS
1570 ENDPROC

You will see that all the VDU 23 character definitions have been broken
down into their binary components. The pattern of 1 s in the definitions

48 Archimedes Game Maker's Manual

clearly shows the shape of the characters that have been designed. Once
you are happy with the definitions, you can compress them into the more
normal single line of parameters separated by comas.

4.4 ECF Patterns
A more flexible approach to producing pattern effects is to use the
extended colour fill system. There are four of these pseudo colours, that
can be used with their pre-set patterns or re-defined to a pattern of your
choice and then used. There are two ways of defining these fills. One, the
default, is a backwards compatible method for the BBC Master. However,
there is a simpler native mode, which we will use. This is enabled with a
simple:

VDU 17,4,11

after the screen mode is set. However, in the 256 colour modes you
always work in native mode. This is logical, as there is no backward
compatibility to be considered in these modes.

A giant ECF pattern can be made by using all four ECF patterns together
in similar layout to that of four UDCs. The principal advantage of this
system over that of blocks of UDCs is that they are used with the graphic
drawing commands so that you can produce complex shapes containing
these patterns. They will also draw faster, but you can only have four
ordinary, or one giant ECF pattern at a time. UDCs will give you up to 224
single character patterns and, by using a greater number of characters
together, much larger multiple character patterns.

Like UDCs, the pattern size is dependent on the screen mode when using
the ECF colours. However it is also dependent on the colours in the mode
so that where characters will be printed the same size in modes 9 and 13,
the ECF pattern will be smaller in the latter. In Listing 4.4 there is an
example of a giant ECF pattern used to get a wall effect. We are again
splitting up the necessary VDU calls to make the patterning clearer. This
isn't quite as straightforward as UDC patterns though, as the relationship
of bits to colours is dependent on the screen mode.

Static Graphics

Listing 4.4: Creating a wall effect

10 REM > Pattern
20
30 MODE 9
40 OFF
50 VDU 23,17,4,11
60 VDU 23,2
70 VDU%01110111
80 VDU%01110001
90 VDU%01110001

100 VDU%01110001
110 VDU%01110111
120 VDU%00010001
130 VDU%00010001
140 VDU%00010001
150
160 VDU 23,3
170 VDU%01110111
180 VDU%00010001
190 VDU%00010001
200 VDU%00010001
210 VDU%01110111
220 VDU%00010001
230 VDU%00010001
240 VDU%00010001
250
260 VDU 23,4
270 VDU%01110111
280 VDU%00010001
290 VDU%00010001
300 VDU%00010001
310 VDU%01110111
320 VDU%01110001
330 VDU%01110001
340 VDU%01110001
350
360 VDU 23,5
370 VDU%01110111
380 VDU%00010001
390 VDU%00010001
400 VDU%00010001
410 VDU%01110111
420 VDU%00010001
430 VDU%00010001
440 VDU%00010001
450
460 GCOL 80,1
470 RECTANGLE FILL 320,256,640,512
480 CIRCLE FILL 128,128,64
490 MOVE 1000,800
500 MOVE 1180,920
510 PLOT &55,1200,720
520 END

49

50 Archimedes Game Maker's Manual

4.5 Backgrounds
If you look closely at any platform games or graphic adventures you will
notice that they actually have highly repetitive backgrounds, in spite of all
the apparent detail. These backgrounds are surprisingly easy to create. All
you need to do is to think of the play area as a grid of squares. If you
choose a size of, say, 64 graphic units square the whole screen can be
regarded as having 20 columns and 16 rows of cells.

What you can now do is define a set of sprites that will exactly fit the cells.
These can be sections of wall, doors, arches, trees or whatever takes your
fancy. You will have to make sure that all the elements lock together like a
jigsaw. Walls in particular must have brick or stonework that can be
matched on all four sides, and you will need to have coping sections and
end walls. This is outlined in Figure 4.1. Notice how I've used more than
one interlocking top middle section, to further break up any obvious line
structures. You should use this duplication with most of the other sections,
particularly large areas of the middle sections, where I recommend three or
four interchangeable sprites. Your game players will be more impressed if
the construction method is well hidden.

I
I

I

Figure 4. 1: Building a wall from sprites

Static Graphics 51

All your screens can now be defined as lists of sprite names - or
addresses if you employ user sprites to the full. With as few as 30 sprites,
you can create enormous maps of seemingly totally different backgrounds.
It is even possible to arrange for cells to be replaced with others as the
game progresses. This is useful for opening doors, collecting objects and
the like.

As these sprites are for background construction it makes sense to use
fixed size, non-masked sprites, for optimum speed. Added to this, there is
the possibility of replacing only the background cells that have any moving
sprites on top of them, instead of re-drawing the whole screen. If there is
very little movement, this can make massive improvements to your overall
efficiency.

While on the subject of backgrounds, it is worth mentioning a common
technique for increasing the number of apparent colours, as well as giving
them a textured appearance. This is known as dithering and involves a
number of colours being used either in a fixed pattern, or randomly
distributed over an area. Both of these arrangements are shown in Listing
4.5

Listing 4.5: Dither

10 REM > Dither
20 :
30 MODE 9
40 OFF
50 left%=128
60 width%=960
70 bottom%=512
80 height%=320
90 GCOL 2

100 RECTANGLE FILL left%,bottom%,width%,height%
110 FOR J%=bottom% TO bottom%+height% STEP 12
120 FOR I%=1eft% TO left%+width% STEP 12
130 GCOL 3
140 POINT I%+4,J%+4
150 POINT I%, J%
160 GCOL 7
170 POINT I%,J%+4
180 GCOL 1
190 POINT I%+4,J%
200 NEXT
210 NEXT
220 :
230 bottom%=128

52 Archimedes Game Maker's Manual

240 GCOL 2
250 RECTANGLE FILL left%,bottom%,width%,height%
260 FOR I%=0 TO 5000
270 R%=RND(3)
280 CASE R% OF
290 WHEN l:GCOL 1
300 WHEN 2 : GCOL 3
310 WHEN 3:GCOL 7
320 ENDCASE
330 POINT left%+RND(width%),bottom%+RND(height%)
340 NEXT
350 ON
360 END

4.6 Banked Screens
The screen layout of the Archimedes is such that an area of memory,
usually of a size set by the user from the desktop, is reserved for the
display. Rise Os allows as many screens as can be fitted into this area to
be used. The visible screen is simply a window on this area. Such an
arrangement lets you have several different screens set up and available
for instant display.

Listing 4.6 shows an outline of how this can be done for MODE 0.
Normally I wouldn't expect anyone seriously to use this mode for games,
but it is easier to demonstrate the effect when you can be sure of several
banks free.

Listing 4.6: Banked screens

10 REM > Banked screens
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCsetscreens
60
70 REPEAT
80 bank%=GET-48
90 IF bank%>0 AND bank%<max%+1 SYS "0S_Byte",113,bank%

100 UNTIL bank%=0
110

120 PROCtidy
130 END
140
150 DEF PROCerror
160 PROCtidy
170 PRINT REPORT$ " @ ";ERL
180 ENDPROC
190

Static Graphics

200 DEF PROCinitialise
210 MODE 8
220 MODE 0
230 OFF
240 DIM block% 12
250 block%!0=150
260 block%!4=-1
270 SYS"OS_ReadVduVariables" , block%,block%+8
280 max%=block%!8 DIV &5000
290 IF max%>9 max%=9
300 ENDPROC
310
320 DEF PROCsetscreens
330 RESTORE+14
340 FOR I%=1 TO max%
350 SYS "0S_Byte",112 , I%
360 COLOUR I%+128
370 COLOUR I%+1
380 CLS
390 PRINT TAB(25,7) "Banked Screens Example"
400 PRINT TAB(20,13) "Press numbers 1 - ";max\ "to select bank"
410 PRINT TAB(20,15) "Use 0 to finish"
420 PRINT TAB(20 , 17) "This is screen bank ";I%
430 READ text$
440 PRINT" SPC 5 text$
450 NEXT
460 ENDPROC
470 DATA This is rubbish, This is also rubbish, How much rubbish do yo

u want to read?,Just to prove it's a different screen bank , Yet more no
nsense to read, The sixth lot of garbage, Yep! It's me again,Boring isn'
t it?,The last lot!

480
490 DEF PROCtidy
500 SYS "OS_Byte",112,1
510 SYS "OS_Byte",113,1
520 CLS
530 ENDPROC

53

The SYS call in PROCinitialise is used to establish just how much screen
memory is available. You should always do this rather than just assume
that people will have sufficient screen memory configured. If the figure
returned is too small then your game should tell the player, and advise on
how to get more memory allocated to the screen.

The active commands are the OS_Byte calls 112 and 113. OS_Byte 112
determines which screen is to be written to by the VDU drivers, while
OS_Byte 113 sets the screen bank to be displayed. The idea of writing to
an invisible screen, while displaying another, can be a little confusing at
first, but once familiar with the concept, you will see that it gives you a
great deal of scope for avoiding unnecessary re-draws.

54 Archimedes Game Maker's Manual

Multiple screen banks are also put to good effect in moving displays. In
most cases, dual screen operation is the most practical. The idea here is
that you draw on one screen while displaying the other. Once the re-draw
is complete you swap screens and repeat the process for the other screen.
In this way none of the actual drawing process is visible no matter how
long it takes. This results in a dramatic reduction in flicker. The switchover
is instantaneous, but you need a WAIT delay to ensure it takes place at
the beginning of a display cycle, otherwise you could end up briefly
displaying half of each screen. Most of the later examples use this
technique.

4. 7 Clearing Screen Areas
It isn't often realised that there are three quite different methods of clearing
an area of screen, all of which have their strengths and weaknesses. If you
want the entire screen cleared, by far the most efficient method is by using
CLS. This will clear to the current text background colour, as set with
COLOUR n+128, taking only about two thirds of the time of a CLG
command. However, if you want a patterned ECF colour you can't use
CLS but will have to use CLG. This will clear to the current graphics
background colour, defined with GCOL n+128. Surprisingly, the RECTAN­
GLE FILL command works slightly faster than CLG, and this will clear to
the graphics foreground.

You will see from this that you can have three different colours set as
clearing colours, and provided you aren't too concerned about speed, you
can just pre-set your colours and select the one you want. However,
there 's far more to it than that.

Both text and graphic areas can have what are known as viewports
defined. For a text viewport, this is calculated in character printing rows
and columns, whereas a graphic viewport will be normal graphic units. CLS
and CLG will then operate only within the designated viewports. If the area
you wish to clear can be defined exactly in text rows and columns, CLS is
still very much faster than the other two methods, and becomes a useful
fast rectangle fill.

4.8 Smartening Up
All the examples so far have been rather bland flat-looking drawings,
where most games these days use a variety of tricks to give depth to an
otherwise ordinary display. A number of special effects have been put

Static Graphics 55

together in Listing 4.7 to give you some idea of what can be achieved with
some quite simple ideas.

Listing 4. 7: Some special effects

10 REM > Frills
20
30 MODE 13
40 VDU 5
50 GCOL %100000+128
60 CLG
70 PROCroll(0,0,1280 , 1024,2,1,1,FALSE)
80 PROCroll(128,640,1024,256,2,2,2,TRUE)
90 PR0Croll(896,160,256,416,0,2,0,TRUE)

100
110 PR0Cplinth(160,256,256,128,16,2,2,2,FALSE)
120 PR0Cplinth(512,128,320,480,16,0,2,2,FALSE)
130 PROCplinth(544,448,256,128,8,2,1,2,TRUE)
140
150 FOR I%=64 TO 1152 STEP 64
160 PR0Cstud(I%+32,928,12,1,2,0)
170 PROCstud(I%+32,96,12 , 2,2,1)
180 NEXT
190
200 GCOL 0 TINT &CO
210 PROCshadow("This is a test",400,800-16,%11,0,4)
220 PROCshadow("This is a",140,544,%1111,%10,4)
230 PROCshadow("test too!",140,496,%1111,%10,4)
240 PROCshadow("Hello",208,336,%010101,%111111,4)
250 PR0Csize(15,24)
260 PROCshadow ("Boo!", 560, 556, %1110, 0, 8)
270 PR0Csize(15,64)
280 PR0Cshadow("2",996+8,476-8,%1111,%1,4)
290 PROCshadow("2",996,476,%11,%1111,4)
300
310 VDU 4
320 PRINT TAB(3,24);
330 END
340
350 DEF PR0Croll(left%,bottom%,width%,heiqht%,red%,qreen%,blue%,fill

%)
360 lowcol%=red%+(qreen%<<2)+(blue%<<4)
370 red%-=(red%>>0)
380 qreen%-=(qreen%>>0)
390 blue%-=(blue%>0)
400 hiqhcol%=red%+(qreen%<<2)+(blue%<<4)
410 FOR I%=0 TO 3
420 GCOL lowco1% TINT I%<<6
430 PR0Cbox(I%<<2)
440 NEXT

56

450 FOR I%=0 TO 3
460 GCOL highcol% TINT I%<<6
470 PROCbox((I%<<2)+16)
480 NEXT
490 IF fill% THEN
500 GCOL highcol%

Archimedes Game Maker's Manual

510 RECTANGLE FILL left%+64,bottom%+64,width%-128,height%-128
520 ENDIF
530 ENDPROC
540
550 DEF PROCbox(i%)
560 RECTANGLE left%+i%,bottom%+i%,width%-i%*2,height%-i%*2
570 RECTANGLE left%-i%+60,bottom%-i%+60,width%+i%*2-120,height%+i%*2

-120
580 ENDPROC
590
600 DEF PROCplinth(left%,bottan%,width%,heiqht%,edqe%,red%,qr••n%,bl

ue%, invert%)
610 LOCAL right%,top%,lowtint%,hightint%
620 right%=left%+width%
630 top%=bottom%+height%
640 lowcol%=red%+(green%<<2)+(blue%<<4)
650 red%-=(red%>0)
660 green%-=(green%>0)
670 blue%-=(blue%>0)
680 highcol%=red%+(green%<<2)+(blue%<<4)
690 hightint%=&CO
700 IF invert% THEN
710 SWAP lowcol%,highcol%
720 SWAP lowtint%,hightint%
730 ENDIF
740 GCOL lowcol% TINT lowtint%
750 MOVE right%,top%
760 MOVE right%-edge%,top%-edge%
770 PLOT &55,right%,bottom%
780 PLOT &55,right%-edge%,bottom%+edge%
790 PLOT &55,left%,bottom%
800 PLOT &55,left%+edge%,bottom%+edge%
810 GCOL highcol% TINT hightint%
820 PLOT &55,left%,top%
830 PLOT &55,left%+edge%,top%-edge%
840 PLOT &55,right%,top%
850 PLOT &55,right%-edge%,top%-edge%
860 GCOL lowcol% TINT hightint%
870 LINE left%,top%,left%+edge%,top%-edge%
880 LINE right%-edge%,bottom%+edge%,right%,bottom%
890 RECTANGLE FILL left%+edqe%,bottom%+edqe%,width%-edqe%*2,height%-

edqe%*2
900 ENDPROC
910
920 DEF PR0Cstud(x%,y%,s%,red%,green%,blue%)
930 lowcol%=red%+(green%<<2)+(blue%<<4)

Static Graphics

940 red%-=(red%>0)
950 green%-=(green%>0)
960 blue%-=(blue%>0)
970 highcol%=red%+(green%<<2)+(blue%<<4)
980 GCOL lowcol% TINT &CO
990 MOVE x%,y%+s%

1000 MOVE x%+s%,y%
1010 PLOT &55,x%,y%
1020 MOVE x%-s%,y%
1030 PLOT &55,x%,y%-s%
1040 GCOL lowcol% TINT 0
1050 MOVE x%+s%,y%
1060 PLOT &55,x%,y%
1070 GCOL highcol% TINT &CO
1080 MOVE x%-s%,y%
1090 PLOT &55,x%,y%+s%
1100 ENDPROC
1110
1120 DEF PR0Cshadow(t$,x%,y%,col%,shade%,gap%)
1130 GCOL shade%
1140 MOVE x%+gap%,y%-gap%
1150 PRINT t$
1160 GCOL col%
1170 MOVE x%,y%
1180 PRINT t$
1190 ENDPROC
1200 :
1210 DEF PR0Csize(x%,y%)
1220 VDU 23,17,7,6,x%;y%1
1230 ENDPROC

57

The first, and probably the oldest idea, is to use a shadow style of printing
for any text. This gives the impression that the text is slightly above the
background, rather than on it. There is nothing particularly complicated
about this. All you do is print the text twice in contrasting colours. The
shadow colour is printed first, usually below and to the right of the top
colour. When this latter is printed it partly obscures the shadow coloured
text. Changing the offset between the two colours can be used to alter the
apparent height of the text above the background. PROCshadow is the
routine that does the work, and you can see that it is very short.

Another idea that has been around for a while, is to use a plinth effect. In
our example, a 256 colour mode has been used which allows us to set up
the colours for the various parts of the plinth automatically. The parameters
for colours that are passed determine the amount of red, green and blue
components present. Two shades and a tint change are calculated from
this information, so only values 0, 1 and 2 can be accepted as colour levels.
Although this gives you a rather restricted range of colours, it is easy to
implement. If you want greater control, you can change the procedure

58 Archimedes Game Maker's Manual

header so that you pass in the actual colours that you want for all sections
of the plinth. If you wanted to use plinths in the 16 colour modes then you
would have to do this in any case.

Although there looks to be rather a lot of code in PROCplinth, the
construction method is in fact quite straightforward. If you look at Figure
4.2 you will see how the structure is broken up into a single rectangle, two
lines and eight triangles - two to each side. Comparing this with the
program listing itself you will see how I've managed to pack the triangles in
such a way as to keep the number of plotting points to the absolute
minimum. The points visited while the triangles are being drawn are
numbered 1 to 10. Only the first two are simple move commands, all the
rest are PLOT &55. After point 6 has been visited the colour is changed.
Colour changes have no effect on plotting positions. It is easy to forget
this, and to try to make each shape self-contained, which simply wastes
time.

Figure 4.2: Plinth construction

An extension of using plinths is to use rolled edges instead of chamfer
edges. This is actually much easier to implement than plinths are.
PROCroll uses a similar colour interpolation to PROCplinth, but in this case

Static Graphics 59

two shading levels are used and all four tint levels are used to get a
smooth change of hue from the darkest part at the edges to the highlight in
the middle of the edging. Unlike plinths, there is no control over the width
of the edging. This could be done but would require the added
complication of calculating just how many shades and tints to use, in order
to maintain the smooth shading effect, considerably detracting from the
simplicity of the procedure.

Instead of using triangles, the routine just draws pairs of squares on
common axis. The largest and smallest are drawn first in the darkest
colour, then the tint lightened and another pair drawn, touching the first
pair inside the largest and outside the smallest. This is repeated for all for
tints, then the whole process repeated for the lighter shade. The spacing of
the squares has been set to exactly the pixel width, for optimum speed. If
you want to use higher resolution modes you will need to plot the
rectangles closer together, and plot more of them. This slows things down,
and in modes with rectangular rather than square pixels the effect isn't so
good.

PROCstud, uses simple triangle drawing to produce an attractive nail stud
effect. Only four triangles are needed, and again, the colours are controlled
by separate RGB components.

A useful feature of Rise Os is the ability to scale the size of the system font
when printing to the graphic cursor. This is handled by PROCsize, and as
you can see has a single VDU call. This scaling technique allows you to
change the size of the text to fit the space available, rather than having to
squeeze other things up to make space.

4.9 Fancy Fonts
Although useful in its own right, the real relevance of scaling the system
font is in conjunction with the font manager. If you set up a game to make
use of the font manager, and the font you want is not available, then
instead of disrupting the player with a request for fonts that he or she may
not have, all you need to do is swap to using the system font. You then
scale this to the same proportions that you would have used with the font
manager. Listing 4.7 is a short program that does just this. The program
works in any 16 or 256 colour mode, maintaining accurate scaling, but due
to the way it is designed, only one colour at a time can be used in the 16
colour modes.

60

Listing 4.8: Scaling fonts

10 REM > Fonts
20
30 PR0Cinitia1ise
40 PR0Cco1our(15,12,8,0,0,0)

Archimedes Game Maker's Manual

50 PROCwrite ("A rather good test", 128, 512)
60 PR0Ccolour(8,15,15,0,0,0)
70 PROCwrite ("And another colour", 128, 384)
80 PROCtidy
90 END

100
110 DEF PROCinitialise
120 MODE 13
130 width%=28
140 height%=44
150 font$="Trinity.Medium.Italic"
160 char%=width%*2
170 yoffset%=height%*1.5
180 hmatch=height%/1.8
190 SYS "Font CacheAddr" TO version%
200 IF version%<200 font%=0 ELSE PROCcallfont
210 IF font%=0 PROCsysfont
220 ENDPROC
230
240 DEF PROCcallfont
250 SYS "Font ReadScaleFactor" TO ,fontx%,fonty%
260 SYS "Font_ReadFontMax" TO f0%,f1%,f2%,f3%,f4%,f5%
270 SYS "Font_SetFontMax",f0%,f1%,&8700,f3%,f4%,f5%
280 DIM buffer% 40
290 more%=0
300 REPEAT
310 SYS "Font_ListFonts",,buffer%,more%,-1 TO ,,more%
320 UNTIL $buffer%=font$ OR more%=-1
330 IF $buffer%=font$ THEN
340 SYS "Font_FindFont",, font$, width%*font:d>>4, hmatch*fonty% .>4, 0

,OTO font%
350 ELSE
360 font%=FALSE
370 ENDIF
380 ENDPROC
390
400 DEF PROCsysfont
410 VDU 5
420 DIM block% 19
430 block%!0=4
440 block%!4=5
450 block%!8=-1
460 SYS "OS_ReadVduVariables",block%,block%+12
470 xeig%=block%!12
480 yeig%=block%!16

Static Graphics

490 VDU 23,17,7,6,width% DIV xeig%;height% DIV yeig%1
500 ENDPROC
510 :
520 DEFPROCcolour(redfore%,greenfore%,bluefore%,redback%,greenback%

,blueback%)

530 IF font% THEN
540 SYS"Font_SetPalette",,0,1,14, (blueback%<<28)+(blueback%<<24)+

(greenback%<<20)+(greenback%<<16)+(redback%<<12)+(redback%<<8), (bluefo
re%<<28)+(bluefore%<<24)+(greenfore%<<20)+(greenfore%<<16)+(redfore%<<
12)+(redfore%<<8)

550 ELSE
560 GCOL ((redfore%>>2)+((greenfore%>>2)<<2)+((bluefore%>>2)<<4))
570 ENDIF
580 ENDPROC
590
600 DEF PR0Cwrite(text$,x%,y%)
610 IF font% THEN
620 MOVE x%+char%*LEN text$,y%
630 SYS "Font_Paint",,text$,%10001,x%,y%-yoffset%
640 ELSE
650 MOVE x%, y%
660 PRINT text$
670 ENDIF
680 ENDPROC
690
700 DEF PROCtidy
710 IF version%>=200 SYS "Font_SetFontMax",f0%,f1%,f2%,f3%,f4%,f5%
720 IF font% SYS "Font_LoseFont",font% ELSE VDU 4
730 ENDPROC

61

As usual, no assumptions are made in the program, and all the information
needed for selecting and scaling is drawn from Rise Os via SYS calls. The
first of these, in PROCinitialise, discovers whether the outline font manager
has been installed. If it hasn't then scaled system fonts are used. The older
bit-mapped manager returns results in the 100 range.

If the font manager is active, then, in PROCcallfont, the scaling factor is
read. The scale factor is 400 by default, ~tit pays not to assume it hasn't
been altered. It represents the relationship between the manager's internal
units and'the-normal graphic units.

Next the fontmax figures are read. The one that really interests us is
fontmax 2. This is the font size above which anti-aliasing is no longer
applied. The next call actually increases this from the default, to ensure
that anti-aliasing is available at all reasonable screen printing sizes.

The following call is inside a loop so that,it can try to find the font we want
to use, in all those available. If none are available, or the one we want is
missing, then as before scaled character printing is used instead. If you

62 Archimedes Game Maker's Manual

like, you can check against two or more fonts that are reasonably similar.
All you need to do is have another string test at the exit of the
REPEAT-UNTIL loop. Finally, the required font is set using the last call in
PROCcallfont.

Although fonts are supposed to be the same overall dimensions when at
the same scaling factor, there are significant differences, so you will need
to select the font that best matches the screen layout you intend to use.
The constants at the beginning of PROCinitialise are used to make fine
adjustments so that font proportions accurately match character printing.

If any of the font checks failed, PROCsysfont finds the vertical and
horizontal pixel scaling factors, and the VDU command adjusts the
proportions of the system font accordingly. Bear in mind, that the system
font can be one you have designed yourself, and loaded from a file.

PROCcolour uses a variant of our bit manipulation for the red, green and
blue foreground and background colours. Four bit numbers are used here
instead of two bit, and the colour control attempts to get an approximate
match between outline and system font colours. The background values
need to be set to that of the actual background colour on which the font is
to be painted. This is so that the anti-aliasing can correctly blend colours.
Background colour is irrelevant when using the system font as, with
graphic printing being used, the background is transparent.

Making it Move

5.1 Objects
You are probably familiar with the idea of using sprites to represent moving
characters, but it may not have occurred to you that it is often practical to
define all objects as sprites and store them in a sprite file. When they are
loaded by your game, they will be instantly available in the form required.

It's often useful to fool your player into thinking there is far more movement
in the game than there really is. The player will usually be concentrating
mainly on a small area of the screen, and therefore won't really notice how
much is going on over the whole screen. This is particularly true of graphic
adventures where the player is moving only a single character. If you plan
you game so that most of the action is in the vicinity of the player's
character, with just the occasional creature or object appearing at the
edges, you'll get the desired result.

Another method of increasing the apparent activity is to have groups of,
say, four low priority objects that, instead of being moved with every loop
of the game, only move on every fourth loop. This is particularly useful with
slow moving objects, and provided the general action is reasonably fast,
your player won't notice the subterfuge. You have gained by reducing the
re-calculating time by four.

5.2 Movement
Making objects appear to move can, in its simplest form, consist of a loop
of program statements as in the examples below.

64 Archimedes Game Maker's Manual

Example 5.1

clear screen
draw background
Loop start

plot objects
calculate new positions
check for collisions (including screen edges)
update loop conditions
wait for a while
rub out objects

Loop end

Example 5.2

Loop start
clear screen
draw background
plot objects
calculate new positions
check for collisions
update loop conditions
wait for a while

Loop end

Which example you use really depends on how many moving objects you
expect to have. The former is generally to be advised where there are only
one or two objects to be moved, and most of the screen is to remain
unaltered. But if there are several objects you should bear in mind that
plotting and rubbing out effectively doubles the number of object
operations performed. In this case you are better off using the second
method. Example 5.3 is a variant of the first method where, instead of
rubbing out the object, which can be difficult over a complex background,
the background itself is first stored, then the object plotted and later, the
background restored. Similarly, Example 5.4 is an improved variant of the
second method that would use a small piece of ARM code for whole
screen storage and recovery.

Example 5.3

clear screen
draw background
Loop start

store backgrounds where objects will be plotted
plot objects
calculate new positions
check for collisions
update loop conditions
wait for a while
recover backgrounds in reverse order

Loop end

Making it Move

Example 5.4

clear screen
draw background
store screen
Loop start

recover screen
plot objects
calculate new positions
check for collisions
update loop conditions
wait for a while

Loop end

65

Background recovery in Example 5.3 has to be done in reverse order for
two or more moving objects in case they overlap. Where this occurs, the
background of the second sprite will include part of the first, so you need to
replace each background piece under exactly the same conditions as
existed when it was stored, otherwise you'll see a strange progression of
sprite debris, whenever two of them overlap.

In order to get really smooth movement it is vital that you keep the overall
loop time to a minimum, and in Example 5.2 particularly, the time between
the clearing of the screen and the plotting of the last object. So why the
deliberate wait? The answer is that all the calculating will take a highly
variable amount of time, and this would result in very erratic re-draw time
and hence jerky movement. The time delay routine in Example 5.5 is
designed to ensure that all the variation in your calculations is absorbed
during the display time rather than the re-draw time. It also helps to ensure
that the display time is longer than the re-draw time, reducing flicker.
Zeroing the timer at the end of the main loop ensures that it is the total
loop time that remains constant, not just the time wasting loop.

Example 5.5

zero time variable
Loop start

perform redraws
perform calculations
Repeat

{do nothing}
Until time variable is greater than constant.
zero time variable

Loop end

One problem you are likely to encounter if you use particularly slow loops,
is that of jittering objects. This is not to be confused with flicker, which is
mainly due to bad re-draw methods. At its most objectionable, jittering will

66 Archimedes Game Maker's Manual

make objects appear doubled and overlapped. This is caused by
displaying objects in the same place on two or more successive screen
refreshes - as opposed to two or more program loops - and then displaying
them at the next position and holding them there for several screen
refreshes, and so on.

Your brain assesses the distance between the two plot locations and
therefore expects a steady progression from one to the next. Added to this,
your eye's persistence of vision begins to break down when the time is
much greater than one screen refresh. This results in the double image
effect, and is particularly noticeable where there is supposed to be smooth
movement of regular shaped objects, and the distance between movement
steps is large. Listing 5.1 demonstrates the problem. The loop is so simple
that it can easily be executed in one screen refresh, but if the spacebar is
pressed the loop time becomes exactly twice the screen refresh.

Listing 5. 1: The double image effect

10 REM > Jitter
20 :
30 MODE 9
40 OFF
50 REPEAT
60 FOR I%=0 TO 1280 STEP 8
70 CLS
80 PRINT TAB(5,10)"Hold spacebar to see jitter";
90 PRINT TAB(l2,12)"Escape to stop";

100 CIRCLE FILL I%,512,32
110 WAIT
120 IF INKEY-99 I%+=8:WAIT
130 NEXT
140 UNTIL FALSE
150 END

The ideal solution then, is to make your game loop work fast enough to be
within a single screen refresh and then use the WAIT command to provide
both your time delay and screen refresh synchronisation. This isn't always
possible however, so you must employ a combination of the following
subterfuges.

O Keep the movement step size as small as possible

O Make the objects move irregularly

O Change the shape, size and colours of the objects on successive plots

O Keep the objects as small and as irregularly shaped as possible.

Making it Move 67

In Listing 5.2 there is a fairly straightforward example using the mouse to
move a star around the screen. This is based on the third method for
movement of a single sprite. A trick is used to make the background
storage easy. As only one small sprite is being plotted, and its movement
is restricted to the middle of the screen, it is possible to use an
inconspicuous corner of the screen as storage using the plot command for
rectangle copy.

Listing 5.2: Moving a single sprite

10 REM > Star
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCsprites
60 PROCbackground
70 MOUSE RECTANGLE -scale% DIV 2,scale%*2,1280,1024-scale%*3
80 REPEAT
90 MOUSE x%,y%,b%

100 PROCmove
110 UNTIL b%
120 PROCtidy
130 END
140
150
160 DEF PROCerror
170 MODE 12
180 PRINT REPORT$ " @ ";ERL;
190 ENDPROC
200
210 DEF PROCtidy
220 COLOUR %111111
230 COLOUR %000000+128
240 PRINT TAB(0,29);
250 ENDPROC
260
270 DEF PROCinitialise
280 *Pointer 1
290 MODE 13
300 OFF
310 PRINT TAB(lO,lO)"Please Wait"
320 SYS "OS_SWINumherFromString",,"OS_SpriteOp" TO sprite%
330 DIM block% 19
340 block%!0=4
350 block%!4=5
360 block%!8=-l
370 SYS "OS_ReadVduVariables",block%,block%+12
380 xeig%=hlock%!12
390 yeig%=block%!16
400 size%=&2000

68 Archimedes Game Maker's Manual

410 DIM area% size%
420 area%!0=size%
430 area%!4=0
440 area%!8=16
450 init%=256+9
460 def%=256+15
470 select%=256+24
480 mask%=512+29
490 getpix%=512+41
500 putpix%=512+44
510 plot%=512+34
520 writeto%=256+60
530 style%=8
540 SYS sprite%,init%,area%
550 scale%=64
560 VDU 23,132
570 VDU%00000001
580 VDU%00000010
590 VDU%00000100
600 VDU%00001000
610 VDU%00011000
620 VDU%00100100
630 VDU%01000010
640 VDU%10000001
650 VDU 23,133
660 VDU%00000000
670 VDU%01000000
680 VDU%01000000
690 VDU%01000000
700 VDU%01111100
710 VDU%00000100
720 VDU%00000100
730 VDU%00000100
740 RESTORE+9
750 READ numcols%
760 DIM cola%(numcols%)
770 DIM colb%(numcols%)
780 FOR I%=0 TO numcols%
790 READ cola%(I%)
800 READ colb% (I%)

810 NEXT
820 ENDPROC
830 DATA 4
840 DATA %111111,%111111
850 DATA %010101,%101010
860 DATA %000000,%010101
870 DATA %010101,%000000
880 DATA %101010,%010101
890
900 DEF PROC81fr1tes
910 LOCAL s%,x%,y%
920 s%=scale% DIV 2

Making it Move

930 x%=scale%
940 y%=scale%
950 star%=FNdefsprite ("star", x%,y%)
960 PR0Cstar(s%,s%,s%)
970 PROCmasksprite(star%,x%,y%)
980 SYS sprite%,writeto%,area%,O
990 ENDPROC

1000
1010 DEF FNdefsprite(a$,x%,y%)
1020 LOCAL add%
1030 x%=x%>>xeig%
1040 y%=y%>>yeig%
1050 SYS sprite%,def%,area%,a$,O,x%,y%,MODE
1060 SYS sprite%,writeto%,area%,a$
1070 SYS sprite%,select%,area%,a$ TO ,,add%
1080 =add%
1090
1100 DEF PR0Cstar(x%,y%,s%)
1110 LOCAL i,p,q,r,a%,b%,c%,d%,e%,f%,i%,t%,u%
1120 p=PI/2.5
1130 q=p/2
1140 r=p/ 4+p
1150 t%=s% DIV 2
1160 u%=s%*3
1170 GCOL %100000+128
1180 CLG
1190 FOR 1%=0 TO numcols%
1200 i=i%*p+r
1210 a%=x%+COS(i)*s%
1220 b%=y%+SIN(i)*s%
1230 c%=x%+COS(i+q)*t%
1240 d%=y%+SIN(i+q)*t%
1250 e%=x%+COS(i+p)*s%
1260 f%=y%+SIN(i+p)*s%
1270 g%=x%+COS(i+q)*u%
1280 h%=y%+SIN(i+q)*u%
1290 GCOL cola%(i%) TINT &CO
1300 MOVE a%,b%
1310 MOVE x%,y%
1320 PLOT&55,c%,d%
1330 GCOL colb%(i%) TINT &80
1340 PLOT&55,e%,f%
1350 NEXT
1360 ENDPROC
1370
1380 DEF PR0Cmasksprite(add%,x%,y%)
1390 LOCAL I%,J%,c%
1400 x%=x%>>xeig%
1410 y%=y%>>yeig%
1420 SYS sprite%,mask%,area%,add%
1430 FOR J%=0 TO y%-l
1440 FOR I%=0 TO x%-l

69

70 Archimedes Game Maker's Manual

1450 SYS sprite%,qetpix%,area%,add%,I%,J% TO,,,,,c%
1460 IF c%=%100000 SYS sprite%,putpix%,area%,add%,I%,J%
1470 NEXT
1480 NEXT
1490 ENDPROC
1500
1510 DEF PROCbackqround
1520 OFF
1530 COLOUR %100000+128
1540 CLS
1550 COLOUR %001100+128
1560 COLOUR %110011
1570 FOR I%=0 TO 14
1580 PRINT TAB(O,I%) STRING$(40,CHR$132)
1590 NEXT
1600 COLOUR %111100
1610 COLOUR %000011+128
1620 FOR I%=15 TO 27
1630 PRINT TAB(O,I%) STRING$(40,CHR$133)
1640 NEXT
1650 COLOUR 128
1660 COLOUR %111111
1670 PRINT TAB(5,10) "Use the mouse to move the star" TAB(5,12) "Obse

rve the bottom left corner" TAB(5,14) "Press a mouse button to stop"
1680 ENDPROC
1690
1700 DEF PROCmove
1710 RECTANGLE x%,y%,scale% , scale% TO 0,0
1720 SYS sprite%,plot%,area%,star%,x%,y%,style%
1730 WAIT
1740 RECTANGLE 0 , 0,scale%,scale% TO x%,y%
1750 ENDPROC

Apart from PROCmove, the movement routine itself, there is nothing really
new in this program . In this routine the first RECTANGLE command moves
a patch of screen to the bottom left corner, and the second, after sprite
plotting and a suitable wait period, moves it back again.

5.3 Animation
Animation is often confused with general movement. However, while most
games involve considerable movement, it has only been with the advent of
high resolution graphics and fast processors that real animation has been
practical. This is where characters move arms and legs to give an
impression of realistic walking or running. Objects such as cars, have
wheels that appear to go round, and monsters can slowly materialise
instead of just flashing onto the screen.

Making it Move 71

5.3.1 Colour changing

If you are using a 16 colour mode, you can get an interesting pseudo
animation using the flashing colours. These can be redefined in fractional
amounts independently for each of the two colours that make up the flash.
There are also two FX commands that allow you to change the flash rates.
The best use of this technique is for small detail, such as silly eye
movements or flapping ears.

Another pseudo animation technique involves palette swapping. Again this
really only suited to 16 colour modes. In modes with fewer colours it isn't
practical, and the 256 colour modes are too complicated to be worth
manipulating in this way for such a simple effect. In brief, the idea is to
break up the movement you wish to animate into, say, eight of the possible
positions of the moving object. The completely overlapping sections are
then drawn in the object's colour. All the other parts are drawn in different
colours, which have been temporarily re-defined to the current background
colour using the extended form of the COLOUR keyword. From then on all
you need to do is alternately switch on each colour in turn by re-defining it
to the desired object colour. This will produce the animation.

An example of this, Listing 5.3, also demonstrates the use of flashing
colours, giving two forms of seemingly asynchronous animation.

Listing 5.3: Colour switching

10 REM > AnimVDU19
20 :
30 MODE 9
40 OFF
50 ON ERROR PROCerror:END
60 PROCinitialise
70 PROCdraw
80 :
90 VDU19,14,18,240,240,192

100 col%=1
110 REPEAT
120 WAIT
130 COLOUR col%,O
140 col%+=1
150 IF col%=colmax% col%=1
160 COLOUR col%,7
170 UNTIL FALSE
180 END
190 :
200 DEF PROCerror
210 MODE 12
220 IF ERR <>17 PRINT REPORT$ " @ ";ERL
230 *FX 9 25

72

240 *FX 10 25
250 ENDPROC
260
270 DEF PROCinitialise
280 *FX9 100
290 *FXlO 12
300 FOR I%=0 TO 14
310 COLOUR I%,O,O,O
320 NEXT
330 COLOUR 15,240,240,240
340 COLOUR 15

Archimedes Game Maker's Manual

350 PRINTTAB(lO,O) "Press Escape to stop"
360 num%=11
370 ymax%=64
380 colmax%=14: REM reduce for different effects
390 co1%=0
400 DIM x%(num%),y%(num%),dx%(num%),dy%(num%)
410 x% () =640
420 y% () =ymax%
430 IF RND (-1)
440 FOR I%=0 TO num%
450 dx%(I%)=(num%>1)-I%
460 dy%(I%)=RND(5)+(num%-ABS dx%(I%))*2+ymax%
470 NEXT
480 ENDPROC
490
500 DEF PROCdraw
510 GCOL 14
520 FOR i=O TO PI STEP .05
530 POINT 640+RND(l80)*COS 1,RND(96)*SIN 1
540 NEXT
550 REPEAT
560 co1%+=1
570 IF co1%=colmax% co1%=1
580 GCOL col%
590 flag%=0
600 x%()=x%()+dx%()
610 y%()=y%()+dy%()
620 dy%()=dy%()-1
630 FOR I%=0 TO num%
640 POINT x%(I%),y%(I%)>>2
650 IF y%(I%)<=ymax% THEN
660 flag%+=1
670 dy%(I%)=0
680 dx%(I%)=RND(9)-5
690 y%(I%)=RND(ymax%)
700 ENDIF
710 NEXT
720 UNTIL flag%>=num%-1
730 COLOUR 14
740 PRINT TAB (16, 31) "YIPPIE ! ! ";

750 ENDPROC

Making it Move 73

The Roman candle effect produced depends on having most of the plotted
points invisible for most of the time. You can see what really was plotted
more easily if you temporarily change the line that calls PROCdraw to:

PROCdraw:VDU20:STOP

The more colours that are used, the greater the distance between visible
spots, and therefore the better the effect. You can prove this by changing
the value of co/max% in the initialisation. In many instances it will be
possible to restrict the range to say around six colours, and allowing
another two for flash effects, you still have eight colours for all your
genuine animated sprites.

5.3.2 Animating sprites

As was noted earlier, the Archimedes doesn't have a dedicated system of
commands for sprite animation. However considerable flexibility is provided
by the sprite commands available, and it is relatively easy to produce
film-type animation. As well as giving more realism to moving objects this
technique can be used as yet another method of fooling people into
thinking there is more action than there really is.

In Figure 5.1 there are two sprite film-type animations. The first consists of
a single moving object within a sprite. For clarity, this is just an x with the
fine line showing the track that the object will seem to follow. Only nine
frames have been used where in reality you'll probably need more,
depending on the overall size of the sprite.

If the whole frame is now moved around the screen reasonably slowly
while using each sprite in turn, the object will appear to weave erratically.
Selecting each sprite in turn is simply a matter of putting all their addresses
in an array when they are created, then picking them out of the array as
follows:

index%=0
REPEAT

PR0Csprite(address%(1ndex%))
index%+=1
IF index%=9 index%=0
REM any other bits

UNTIL end%

The second film is a modification of the first. Instead of a single object we
have three identical ones, a, b and c, all at different points on the same
track. This is rather like getting something for nothing, as we now seem to
have more objects but need fewer sprites to make the film. You could, of

74 Archimedes Game Maker's Manual

course, keep the same number of sprites and use a longer, more
complicated track.

When using this form of animation, the film sequence would be interleaved
with any other similar films and also with any single sprite object
movements.

1 2 3

4 5 6

7 8 9

1 2 3

Figure 5. 1: Sprite film animation

Making it Move

5.4 Collision Detection
Most games use variants of two basic methods of handling collisions:

o By comparing coordinates between objects

O By looking at the pixel colours where an object is about to move to.

75

We will look at these first, then go on to look at other techniques and
refinements.

5.4.1 Coordinate collisions

This type of collision is calculated from the X,Y positions and movement
vectors of each object. In its simplest form you compare the X and Y
coordinates of one object with the X and Y coordinates of the other.

Quite often programmers waste a lot of processing time making redundant
collision tests. As there is a need to test every moving object, they
therefore loop through testing each object against every other object. If you
think about it, you will realise that there is no need to check a stationary
object. Things will bump against it, but it will never bump against them. As
well as that, you don't need to check against an object that hasn't yet
moved. All objects that are going to move will normally do so in the same
pass, so an object may actually move out of the way. It would therefore be
a cheat to assume a collision.

All that is necessary is to create a set of arrays representing a stack of
objects, with the stationary ones at the bottom of the stack. The arrays
should contain the object's X,Y coordinates and also their sizes. Starting
with the first moving object you compare for collisions with all those lower
in the stack. If you are restricted to very small, fast moving objects, you
could just compare the coordinates and assume a collision when they are
within one pixel size of each other. This is seldom practical though. More
usually you need to compare the distance between the objects with the
sum of their sizes. This comes down to a simple piece of Pythagoras as
shown in Figure 5.2 where the size is defined as the radius of a circle that
contains the object.

Collision detection could also include screen edges which should then be
mapped as four very large stationary objects well outside the actual screen
limits. These objects would be so big that their perimeter is almost a
straight line as far as the screen is concerned.

76 Archimedes Game Maker's Manual

If you study Listing 5.4 you will see how collisions can be handled in
practice. There is unfortunately, a rapid deterioration in speed as the
number of objects increases, so in the collision example, I've allowed for
no stationary objects, and used fairly ordinary screen edge testing. Even
so you will see considerable jitter, unless you are using an ARM 3
machine. This is mainly because, for simplicity, filled circle drawing is used
rather than sprite plotting.

' I

xl yl

p

/

'
I

I

I

/ PQ = x2 - xl

... -- - -...

Q

A collision occurs when sl + s2 >PR

Figure 5.2: Coordinate collisions

Listing 5.4: Handling coordinate collisions

10 REM > coordinate
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 REPEAT
60 PROCplot
70 PROCupdate
80 UNTIL FALSE
90 END

100 :
110 DEF PROCerror

' '

Making it Move

120 MODE 12
130 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
140 ENDPROC
150
160 DEF PROCinitialise
170 MODE 12
180 MODE 9
190 OFF
200 SYS "OS_SWINumberFromString",,"OS_Byte" TO byte%
210 max%=3
220 xmax%=1280
230 ymax%=1024
240 DIM x%(max%)
250 DIM y%(max%)
260 DIM s%(max%)
270 DIM dx%(max%)
280 DIM dy%(max%)
290 FOR I%=0 TO max%
300 s%(I%)=8+RND(l0)*4
310 x%(I%)=s%(I%)+RND(xmax% DIV 4-s%(I%)DIV 2)*4
320 y%(I%)=s%(I%)+RND(ymax% DIV 4-s%(I%)DIV 2)*4
330 dx%(I%)=RND(6)*4-12
340 dy%(I%)=RND(6)*4-12
350 NEXT
360 PRINT TAB(9,7) "Co-Ordinate Collisions"
370 PRINT TAB(l0,11) "Press Escape to stop"
380 IF INKEY 100
390 sc%=1
400 ENDPROC
410
420 DEF PROCplot
430 WAIT
440 SYS hyte%,113,sc%
450 sc%=sc% EOR3
460 SYS byte%,112,sc%
470 CLS
480 FOR I%=0 TO max%
490 GCOL I%+1
500 CIRCLE FILL x%(I%),y%(I%),s%(I%)
510 NEXT
520 ENDPROC
530
540 DEF PROCupdate
550 FOR J%=1 TO max%
560 FOR I%=0 TO J%-l
570 a%=x%(J%)-x%(I%)
580 b%=y%(J%)-y%(I%)
590 c%=s%(I%)+s%(J%)
600 IF a%*a%+b%*h%<c%*c% PROCbounce
610 NEXT
620 NEXT
630 FOR I%=0 TO max%

77

78 Archimedes Game Maker's Manual

640 IF x%(I%)<s%(I%) OR x%(I%)>xmax%-s%(I%) PROCdx
650 IF y%(I%)<s%(I%) OR y%(I%)>ymax%-s%(I%) PROCdy
660 NEXT
670 x%()=x%()+dx%()
680 y%()=y%()+dy%()
690 ENDPROC
700 :
710 DEF PROCbounce
720 a%=dx%(J%)-dx%(I%)
730 dx%(J%)=dx%(J%)-a%
740 dx%(I%)=dx%(I%)+a%
750 b%=dy%(J%)-dy%(I%)
760 dy%(I%)=dy%(I%)+b%
770 dy%(J%)=dy%(J%)-b%
780 ENDPROC
790 :
800 DEF PROCdx
810 a%=ABS dx%(I%)
820 IF x%(I%)<s%(I%) dx%(I%)=a% ELSE dx%(I%)=-a%
830 ENDPROC
840 :
850 DEF PROCdy
860 b%=ABS dy%(I%)
870 IF y%(I%)<s%(I%) dy%(I%)=b% ELSE dy%(I%)=-b%
880 ENDPROC

A small point that might cause confusion is the use of two mode changes.
The only function that the first one serves is to ensure that there is enough
screen memory available for bank switching. It takes up exactly twice the
memory of the wanted mode, so will give a Bad mode error message if
there isn't enough space for two screen banks in the wanted mode.

If you are using ARM code for collision calculations, considerable speed
increase can be made by, instead of taking the square root for the
hypotenuse, simply comparing the squared distance with the squared
value of the sum of the object sizes. Only simple MUL instructions would
be needed in this case, whereas square rooting would require your own
routine in ARM code.

If all your objects are about the same size you can cheat by using
pre-calculated values for the object sizes that approximate to the squares
of the sum of the sizes. You will find that larger objects overlap a little,
while smaller ones don't quite meet, but you can actually use that to your
advantage, and if the game is moving reasonably fast, your player won't
notice anyway.

This method works well for fairly regular objects that can fit reasonably
inside a circle, but will fail for objects that are very long and thin, or have
long appendages. There are two solutions to this problem. The first is

Making it Move 79

simply to regard the object as a cluster of objects - indeed, it may pay you
to plot it as a cluster rather than a single sprite. Alternatively, if the object
can be fitted approximately into an ellipse, you can modify the size
parameters of each object by a factor dependent on its orientation and
collision angle. This is really pushing the method to the limit, so I'll leave
that to you to work out if you want to follow it up.

There 's nothing more annoying than a game that indicates a collision when
you can see that there is clear background between the objects which
have supposedly collided. On the other hand, most people will consider
that they were clever and got away with it, if there is a slight overlap
without a collision being indicated. The rule therefore, is always to give the
player the benefit of the doubt. This is most easily done by assuming
player objects to be slightly smaller than they really are when calculating
for collisions. The exception is where the player is firing at the enemy. In
this case, it pays to calculate on the basis that the player's missiles are
slightly bigger than they are.

5.4.2 Pixel collisions

Pixel collisions are where screen points under an object are examined to
see if they match any know collision colours. Unlike coordinate collisions,
speed is unaffected by the number of objects that any single object may
collide with, and these collisions can be made more tolerant of the shape
of the objects that have collided.

If you are using 256 colour modes, there is a very easy way of arranging
intelligent collision detection, by sacrificing a little colour accuracy. Instead
of using colour as such, you can use the four tint levels. Where a value O
is returned regard this as non collision objects in the background. 64 can
be solid but benign objects and borders, 128 can be enemy objects and
192 can be player objects or missiles. Listing 5.5 is a rather crude
demonstration of the basic idea behind this.

A simple CASE statement is used to determine what action should be
taken for any given collision. The TINT command is being used to find the
tint of the point that the object would next be visiting rather than the point
where it already is. This should prevent any overlapping. However, you will
see that I've used Exclusive Or plotting of the moving object, which helps
to show the overlaps that still can occur.

80

Listing 5.5: Pixel collision detection

10 REM > Pixel
20
30 PROCinitialise
40 GCOL 3,%111111 TINT &CO
50 x%=640
60 y%=512
70 MOUSE TO x%,y%
80 CIRCLE FILL x%,y%,s%
90 REPEAT

100 MOUSE nx%,ny%,b%
110 dx%=SGN(nx%-x%>>2)
120 dy%=SGN(ny%-y%>>2)
130 WAIT
140 CIRCLE FILL x%,y%,s%
150 tint%=TINT(x%+dx%*s%,y%+dy%*s%)
160 CASE tint% OF
170 WHEN O:PRINT TAB(15,30) SPC 9;

Archimedes Game Maker's Manual

180 WHEN &40:dx%=0:dy%=0:PRINT TAB(17,30) "Boinq!";
190 WHEN &80 :dx%=0 :dy%=0 :PRINT TAB (18, 30) "Ouch";
200 WHEN &CO:PRINT TAB(15,30) "Hi Friend";
210 ENDCASE
220 x%+=dx%*4
230 y%+=dy%*4
240 CIRCLE FILL x%,y%,s%
250 UNTIL b%>0
260 PRINT TAB(0,28)
270 END
280
290 DEF PROCinitialise
300 *Pointer 1
310 MODE 13
320 OFF
330 GCOL%000010 TINT 0
340 MOVE 640,800
350 MOVE 600,760
360 PLOT&55,680,760
370 GCOL%000010 TINT &40
380 RECTANGLE FILL 128,896,1024,128
390 GCOL%001000 TINT &40
400 RECTANGLE FILL 0,0,128,1024
410 RECTANGLE FILL 1152,0,128,1024
420 RECTANGLE FILL 128,0,1024,128
430 GCOL%000010 TINT &80
440 CIRCLE FILL 320,512,32
450 GCOL%000010 TINT &CO
460 CIRCLE FILL 960,512,32
470 GCOL%101010 TINT 0
480 RECTANGLE FILL 600,256,80,80
490 COLOUR%001111 TINT 0

Making it Move

500 PRINT TAB(ll,10) "Use mouse to move" TAB(9,ll) "Press a button t
o stop";

510 COLOUR%001000+128 TINT &40
520 s%=16
530 MOUSE ON
540 ENDPROC

81

When you run this program you will see that the different types of collision
are very positively identified, even though the colours of the obstructions
may be very similar.

5.4.3 Cell collisions

You've probably not considered the idea of collisions in board games, but
nevertheless a specialised form does take place. It's normal to split the
board of, say, a draughts game into an 8 x 8 two dimensional array. As
pieces are put on the board the appropriate element in the array is set to
indicate that a piece is there, and which player it be'9?gs to. In games like
chess, not only is the existence of the piece identified, but its type as well.
When testing player moves, the array element corresponding with the
destination screen position is checked to see if there is a piece already in
that cell - in other words, a collision.

This suggests a third form of collision detection in arcade style games, an
extension of coordinate collisions. You keep all sprites to a given size, or a
multiple of that size, and split up the screen into a sprite sized grid. You
then have to ensure that sprites are always positioned exactly in one of
these cells. From then on you can maintain a two dimensional array of the
play area and can perform simple quick array tests for collisions.

Probably the best method of ensuring sprite positioning is to set up an
animation sequence for all moving objects, where, in the case of the
player's object, movement directions are initiated by the player, but the
actual movement itself is taken over by the animator for a fixed number of
steps. You can include film type animation at the same time, so that the
animation sequence gives the illusion of smooth, continuous movement.
This kind of movement and collision system is probably best suited to the
simpler platform games and graphic adventures, where you know the
characters will always be at certain levels and the restricted amount of
angular movement is acceptable.

In Listing 5.6 there is a more complete program than usual. This not only
demonstrates cell collisions but also brings together a number of points
we've looked at.

82

Listing 5.6: Cell collisions

10 REM > Cells
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCassemble
60 PROCsprites
70 PROCbackground
80 PROCstart
90

100 E%=1
110 T%=TIME
120 REPEAT
130 IF t%(0)=0 PROChuman
140 FOR I%=1 TO obs%

Archimedes Game Maker's Manual

150 IF t%(I%)=0 AND RND(50)=1 t%(I%)=RND(4)
160 NEXT
170 FOR I%=0 TO obs%
180 IF t%(I%) PROCcheck
190 NEXT
200 REPEAT UNTIL TIME-T%>3
210 WAIT
220 T%=TIME
230 SYS byte%,113,E%
240 E%=E% EOR3
250 SYS byte%,112,E%
260 CALL copy
270 FOR I%=0 TO obs%
280 PROCmove
290 NEXT
300 UNTIL FALSE
310 END
320
330 DEF PROCerror
340 MOPE 12
350 *FX 15 1
360 IF ERR<>l7 PRINT REPORT$" @ ";ERL
370 ENDPROC
380
390 DEF PROCinitialise
400 MODE 15
410 MODE 13
420 OFF
430 smax%=3 REM number of sprites (-1)
440 DIM list%(smax%): REM sprite addresses
450 size%=&3000
460 DIM area% size%
470 SYS "OS_SWINumberFromString",,"OS_Byte" TO byte%
480 SYS "OS_SWINumberFromString",,"OS_SpriteOp" TO sprite%
490 !area%=size%

Making it Move

500 area%!4=0
510 area%!8=16
520 SYS sprite%,&209,area%
530 norm%=&222
540 spec%=&234
550 DIM scale% 15
560 scale%!0=1
570 scale%!4=4
580 scale%!8=1
590 scale%!12=1
600 DIM cells%(9 , 7)
610 obs%=4
620 DIM n%(obs%)
630 DIM t%(obs%)
640 DIM x%(obs%)
650 DIM y%(obs%)
660 ENDPROC
670
680 DEFPROCassemble
690 DIM block% &BO
700 block%!0=148
710 block%!4=7
720 block%!8=-l

REM position cells
REM number of moving objects
REM film slide number
REM movement direction
REM obvious!

730 SYS "OS_ReadVduVariables",block%,block%+12
740 C%=block%!16 REM screen size
750 DIM A% C% REM stored screen start
760 B%=block%!12 REM screen base
770 D%=A%+C% REM stored screen end
780 memory=O
790 screen=l
800 size=2
810 memoryend=3
820 bank=4
830 lowreq=4
840 hiqhreq=ll
850 link=l4
860 FOR I%=0 TO 2 STEP 2
870 P%=block%
880 [OPT I%

890 .copy
900 CMP bank,#2
910 ADDEQ screen,screen,size
920 .copyloop
930 LDMIA (memory) !,{lowreq-hiqhreq}
940 STMIA (screen) !,{lowreq-hiqhreq}
950 CMP memory,memoryend
960 BLT copyloop
970 MOV PC, link
980
990 .store

1000 CMP bank,#2
1010 ADDEQ screen,screen,size

83

84

1020
1030
1040
1050
1060
1070
1080

.storeloop
LDMIA (screen) !,{lowreg-highreg}
STMIA (memory) !,{lowreg-highreg}
CMP memory,memoryend
BLT storeloop
MOV PC, link

l
1090 NEXT
1100 ENDPROC
1110
1120 DEF PROCsprites
1130 J=O
1140 FOR I%=0 TO 3
1150 GCOL%001111
1160 CLS
1170 J+=PI/32
1180 FOR I=O TO PI*2 STEP PI/8

Archimedes Game Maker's Manual

1190 MOVE (COS(I+J))*64+64, (SIN(I+J))*64+64
1200 DRAW 64,64
1210 NEXT
1220 GCOL%000011
1230 CIRCLE FILL 64,64,14
1240 PR0Cdefsprite(0,0,128,128,I%)
1250 NEXT
1260 ENDPROC
1270
1280 DEF PR0Cdefsprite(x%,y%,a%,b%,n%)
1290 SYS "OS Sprite0p",&110,area%,STR.$ n%,,x%,y%,x%+a%,y%+b% TO,, list

%(n%) - •

1300 PR0Cspritemask(list%(n%),area%,sprite%)
1310 ENDPROC
1320
1330 DEF PR0Cspritemask(N%,R%,S%)
1340 LOCAL A%,B%,F%,J%,I%
1350 SYS S%,&21D,R%,N%
1360 SYS S%,&228,R%,N% TO ,,,A%,B%
1370 FOR J%=0 TO A%-l
1380 FOR I%=0 TO B%-l
1390 SYS S%,&229,R%,N%,J%,I% TO , ,,,,F%
1400 IF F%=0 SYS S%,&22C,R%,N%,J%,I%,O
1410 NEXT
1420 NEXT
1430 ENDPROC
1440
1450 DEF PROCbackground
1460 CLS
1470 GCOL%111111
1480 FOR !%=128 TO 1023 STEP 128
1490 LINE 0,I%,1279,I%
1500 NEXT
1510 FOR I%=128 TO 1279 STEP 128
1520 LINE I%,O,I%,1023

· Making it Move

1530 NEXT
1540 FOR I%=0 TO 7
1550 cells%(0,I%)=l
1560 cells%(9,I%)=l
1570 SYS sprite%,norm%,area%,list%(0),0,I%<<7,8
1580 SYS sprite%,norm%,area%,list%(0),1152,I%<<7,8
1590 NEXT
1600 FOR I%=l TO 8
1610 cells%(I%,O)=l
1620 cells%(I%,7)=l
1630 SYS sprite%,norm%,area%,list%(0),I%<<7,0,8
1640 SYS sprite%,norm%,area%,list%(0),I%<<7,896,8
1650 NEXT
1660 COLOUR%llOOOO+l28
1670 GCOL%ll0000 TINT 0
1680 RECTANGLE FILL 96,0,1088,80
1690 PRINT TAB(4, 30) "Z left X riqht ' up
1700 PRINT TAB(13,31) "Escape to Exit";
1710 E%=1
1720 CALL store
1730 ENDPROC
1740
1750 DEF PROCstart
1760 FOR I%=0 TO obs%
1770 x%(I%)=I%+2<<7
1780 y%(I%)=RND(4)+l<<7
1790 cells%(I%+2,y%(I%)>>7)=1
1800 NEXT
1810 ENDPROC
1820
1830 DEF PROChuman
1840 IF INKEY-98 t%(0)=1
1850 IF INKEY-67 t%(0)=2
1860 IF INKEY-80 t%(0)=3
1870 IF INKEY-105 t%(0)=4
1880 ENDPROC
1890
1900 DEF PROCcheck
1910 IF n%(I%) ENDPROC
1920 a%=x%(I%)>>7
1930 b%=y%(I%)>>7
1940 CASE t%(I%) OF

I down"

1950 WHEN l:IF cells%(a%-1,b%) t%(I%)=0 ELSE cells%(a%-l,b%)=1
1960 WHEN 2:IF cells%(a%+l,b%) t%(I%)=0 ELSE cells%(a%+1,b%)=1
1970 WHEN 3:IF cells%(a%,b%+1) t%(I%)=0 ELSE cells%(a%,b%+1)=l
1980 WHEN 4:IF cells%(a%,b%-l) t%(I%)=0 ELSE cells%(a%,b%-1)=1
1990 ENDCASE
2000 IF t%(I%) n%(I%)=8:cells%(a%,b%)=0
2010 ENDPROC
2020
2030 DEF PROCmove
2040 CASE t%(I%) OF

85

86 Archimedes Game Maker's Manual

2050 WHEN O:PROCstill
2060 WHEN l:PROCleft
2070 WHEN 2:PR0Cright
2080 WHEN 3:PROCup
2090 WHEN 4:PR0Cdown
2100 ENDCASE
2110 ENDPROC
2120
2130 DEF PROCstill
2140 SYS sprite%,norm%,area%,list%(0),x%(I%),y%(I%),8
2150 ENDPROC
2160
2170 DEF PROCleft
2180 x%(I%)-=16
2190 SYS sprite%,norm%,area%,list%(3-n%(I%)AND3),x%(I%),y%(I%),8
2200 n%(I%)-=l
2210 IF n%(I%)=0 t%(I%)=0
2220 ENDPROC
2230
2240 DEF PROCright
2250 x%(I%)+=16
2260 SYS sprite%,norm%,area%,list%(n%(I%)AND3),x%(I%),y%(I%),8
2270 n%(I%)-=l
2280 IF n%(I%)=0 t%(I%)=0
2290 ENDPROC
2300
2310 DEF PROCup
2320 y%(I%)+=16
2330 IF n%(I%)>2 AND n%(I%)<6 scale%!12=3 ELSE scale%!12=4
2340 SYS sprite%,spec%,area%,list%(0),x%(I%),y%(I%),8,scale%
2350 n%(I%)-=l
2360 IF n%(I%)=0 t%(I%)=0
2370 ENDPROC
2380
2390 DEF PROCdown
2400 y%(I%)-=16
2410 IF n%(I%)<4 scale%!12=n%(I%)+4 ELSE scale%!12=12-n%(I%)
2420 SYS sprite%,spec%,area%,list%(0),x%(I%),y%(I%),8,scale%
2430 n%(I%)-=l
2440 IF n%(I%)=0 t%(I%)=0
2450 ENDPROC

In the first place you will notice there is some ARM code, in
PROCassemble. This is the screen storing and recovery system,
discussed earlier, for complex backgrounds. An indication of its efficiency
is given by the fact that it takes about twice as long to execute as the CLS
command. This is very much faster than a CLS followed by only a couple
of plotting commands, so is dramatically faster than re-plotting all the
sprites round the edge of the screen.

Making it Move 87

When moving objects horizontally, film animation is used to give the
impression of rolling wheels, whereas sprite scaling is used on the y axis
for stretching and squashing the wheels as they move vertically.

Instead of drawing directly into the sprites, as normal, I've drawn to the
screen so that you can see the animation sequence as it is built up. You
will notice that only four sprites need to be defined as the spokes then
overlap.

The sprites used are rather large and slow to plot, so due to the relatively
long loop time of about two screen refreshes, there should be a
considerable amount of jitter associated with the movement routine, but as
the sprites are so irregular and change with every re-plotting, the action
looks reasonably smooth.

To avoid the need for screen edge testing and array subscript range
problems, the screen is surrounded by sprites, all of which are flagged in
the array. By making a small alteration to the array- and X and Y division
factors, you could easily move the limiting array elements right off the
screen. This gives lots of possibilities for special off screen collisions.

As a final point, you can easily identify the type of collision, and therefore
the most appropriate action, by using different values for different objects
in the array, as you would for the chess game mentioned before.

5.4.4 Pointer collisions

One last form of collision system is given to you by Rise Os itself. It is the
mouse pointer system. The Wimp is designed to be able to identify which
window, or icon within a window, the pointer is currently over. Therefore all
you need to do is make up a scene that will be a window's sprite
background, then overlay selected areas with sprite icons that blend in with
the picture.

You now have a true desktop game. You can go further by re-defining the
pointer to say, cross hairs, and use the mouse to control a form of alien
zapping game. Unfortunately, speed will be poor, and a little variable, but it
certainly gives you scope for really pushing the computer and your
programming to the limit. I've given no program example of this, as I don't
want to get embroiled in managing the Wimp, but Figure 5.3 shows how
the sprites would be positioned and recognised. You will see that I've used
two icons to enclose the area of the stream in the picture. This avoids the
possibility of selecting the stream over a large area of land, as could occur
with a single larger icon.

88

~
- -- - ------ - ---

' I I

I I

I_ - - - - - - - - - - - - - - - ~

@
-- --------:

I • I
, • I

+ I
, I

I I .._ _________ ...

Figure 5.3: Hidden icons in pictures

Archimedes Game Maker's Manual

;--o-- ~
I I
I ___ I

If you want to investigate this area more fully you will have to study the
Programmers' Reference Manual. I suggest that initially, you look at the
idea of separating the pointer from the mouse (page 301), then redefining
the pointer (page 331), and moving the pointer independently (page 338).

To understand how to make best use of the pointer/icon system under the
Wimp you will need to pay particular attention to pages 1138 - 1140, 1146,
1180 and 1189.

Finally, it is sometimes practical to use a combination of two methods. You
may, for example, decide that it is most efficient to use pixel tests to
establish that some form of collision has taken place, backed up by
coordinate examination to establish precisely what has been met.

5.4.5 Look ahead

One problem with collision tests is that of a skip-over taking place. This is
most likely to happen with pixel testing, and is due to an object moving a
significantly greater distance than the distance between it and some small
obstruction. The effect is that the object seems to pass through the
obstruction. The way to resolve this problem is to compare the object's
movement vector with the size of the smallest obstruction in the game. If

Making it Move 89

the vector is larger you need to make one or more intermediate tests,
along the line of movement and in steps that are smaller than the size of
the obstruction.

A similar problem arises where you have glancing hit situations. In this
case, the vectors of the moving objects don't intersect but are close
enough for a collision to take place, allowing for the object sizes. If this is a
problem you should consider additional off-axis tests. This all tends to slow
things down and add to the complexity. As usual, some compromise will
probably be needed. Figure 5.4 shows both the look-ahead and off-axis
situations to make the points clearer.

Moving
Object Obstacle

New
Position

.,,. - - ,.. ..
; ' , '

I \
I I

--t---- I
I

I I

' I

... /
....... -

Test Points

Moving
Object

Obstacle

/
I

I
I

Figure 5.4: Look-ahead and off-axis collisions

,..
I

/

New
Position

90 Archimedes Game Maker's Manual

5.5 Scrolling
A familiar feature of wordprocessors, spreadsheets and the like, taken
quite for granted, is that of scrolling. There are many games that also use
scrolling to good effect. On most machines, vertical scrolling is the easiest,
and the Archimedes is no exception. There are two basic methods you can
use on the Archimedes: hardware and software scrolling.

5.5.1 Hardware scrolling

This is very much faster than software scrolling because in ess<-:'.J ,
nothing actually moves. All that is changed is the start address of
screen. When the screen is displayed, the computer - hardware - starts <:il

the memory address given. To scroll through the screen memory you just
increment this address by the number of bytes for one screen line.
Logically, if you move the start address up through the screen memory,
you will eventually reach the point where there isn't enough left for a full
screen. In this case, the hardware simply subtracts the total screen siz<
from the address at this point, to bring it back to the beginning of the
screen memory area, then carries on from there. For continuous scrolling
you will need to perform the same wrap around, bearing in mind that the
SYS call we use works with an offset to the screen area rather than an
absolute address.

Due to the way the screen memory is laid out, if you ensure that there is
sufficient screen memory set aside, you can easily produce a continuous
band of scenery of several full screen sizes and then scroll it vertically. You
will need to select each screen bank in turn for drawing, and also have to
ensure that the top edge of each screen exactly matches to bottom of the
next. Finally, the top of the last screen will need to match the bottom of the
first one being used in the scroll. This is shown in Figure 5.5.

Alternatively, for simpler effects, you can continuously re-draw the top line
if you scroll downwards, or the bottom line if you scroll upwards. A simple
scrolling example based on this latter arrangement is shown in Listing 5.7.
In this example both the display and VDU writing offsets are incremented
together. However, you can have them scrolled independently, allowing
you to plot quite large objects on a hidden part of the screen, then scroll
them into view. ·

Making it Move

Total
Screen

Memory

Figure 5.5: Vertical scrolling

One
Screen -..,

""'

91

\

,

92

Listing 5. 7: A simple scrolling example

10 REM > Scroll
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 REPEAT
60 base%!l+=line%
70 IF base%!l>=size% base%!1-=size%
80 WAIT
90 SYS "0S_Word",22,base%

100 a%+=RND(l5)-8
110 b%+=RND(l5)-8
120 GCOL %011101
130 MOVE 0, 0
140 DRAW a%,O
150 GCOL %100000
160 DRAW b%,0
170 GCOL %001000
180 DRAW 1279,0
190 UNTIL INKEY l>-1
200 END
210
220 DEF PROCerror
230 MODE 12
240 PRINT REPORT$ " @ ";ERL
250 ENDPROC
260
270 DEF PROCinitialise
280 MODE 13
290 OFF
300 DIM block% 19
310 block%!0=6:REM line length
320 block%!4=150:REM total screensize
330 block%!8=-l

Archimedes Game Maker's Manual

340 SYS "0S_ReadVduVariables",block%,block%+12
350 line%=block%!12
360 size%=block%!16
370 DIM base% 5
380 ?base%=%11
390 base%!1=0
400 a%=512
410 b%=768
420 PRINT TAB(9,30) "Press any key to stop"
430 ENDPROC

I've only used simple line drawing to produce a river effect. but you can
easily add sprites on top of the scroll action. If you do, you must remember
to add the scrolling offset to their screen position when you rub them out,
ready for the next screen refresh.

Making it Move 93

Although it is possible to get sideways scrolling using this method, it is
difficult to get a smooth effect, and the results are not really worth the
effort. This is because the screen start address can't be offset by only one
byte, but has to be a number of words depending on the current screen
mode. The result is, that you need to re-draw quite a wide block before
scrolling. For the same reason, diagonal scrolling is even more difficult
using this technique, although, it would be very interesting to see someone
come up with a practical way of doing it.

5.5.2 Scrolling in software

This method involves re-plotting every point of the screen, offset by the
amount of movement required. As before, you will then need to re-draw the
newly exposed areas. One simple, elegant solution for this re-plotting, is to
define a sprite to be the entire screen area, then re-plot the sprite offset by
the degree of scroll movement you want. This makes for extremely easy,
albeit rather slow, re-plotting . Provided you take care of the necesdary
edge filling, you have the basis for a simple, all directions, scroll. Howe~er,
it is really best suited for the lower resolution, 16 colour modes. This is
demonstrated in Listing 5.8.

Listing 5.8: Software scrolling

10 REM > SpriteScrl
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 REPEAT
60 SYS sprite%,get%,area% , "S",0,xl%,yl%,xh%,yh% TO ,,add%
70 x%=(INKEY-98)-(INKEY-67)<<2
80 y%=(INKEY-105)-(INKEY-80)<<2
90 WAIT

100 SYS sprite%,put%,area%,add%,xl%+x%,yl%+y%
110 IF x% PROCvert
120 IF y% PROChoriz
130 IF RND(20)=1 PROCblot
140 UNTIL FALSE
150 END
160 :
170 DEF PROCerror
180 *FX 21
190 MODE 12
200 IF ERR<>17 PRINT REPORT$ " @ ";ERL
210 ENDPROC
220 :
230 DEF PROCinitialise
240 MODE 9

94 Archimedes Game Maker's Manual

250 OFF
260 SYS "OS_SWINumberFromStrinq",,"OS_SpriteOp" TO sprite%
270 size%=&14000
280 DIM area% size%
290 area%!0=size%
300 area%!4=0
310 area%! 8=16
320 init%=256+9
330 qet%=512+16
340 put%=512+34
350 SYS sprite% , init%,area%
360 COLOUR 8,128 , 128 , 128
370 PRINT TAB(l0 , 2) "Eiqht direction scroll"
380 PRINT TAB(2 , 5) "Z left X riqht ' up
390 PRINT TAB(l0,26) "Press Escape to exit"
400 xl%=160
410 xh%=1120
420 yl%=256
430 yh%=768
440 back%=8
450 GCOL 128+back%
460 VDU 24,xl%;yl%;xh%;yh%;
470 CLG
480 ENDPROC
490
500 DEF PROCvert
510 IF x%>0 PROCleft ELSE PROCriqht
520 ENDPROC
530
540 DEF PROChoriz
550 IF y%>0 PROCbottom ELSE PROCtop
560 ENDPROC
570
580 DEF PROCleft
590 GCOL back%
600 LINE xl%,yl%,xl%,yh%
610 ENDPROC
620
630 DEF PROCriqht
640 GCOL back%
650 LINE xh%,yl%,xh%,yh%
660 ENDPROC
670
680 DEF PROCtop
690 GCOL back%
700 LINE xl%,yh%,xh% , yh%
710 ENDPROC
720
730 DEF PROCbottom
740 GCOL back%
750 LINE xl%,yl%,xh%,yl%
760 ENDPROC

I down"

Making it Move

770 :
780 DEF PROCblot
790 GCOL RND(7)
800 r%=RND(63)
810 CIRCLE FILL xl%+r%+RND(960-r%*2),yl%+r%+RND(512-r%*2),r%
820 ENDPROC

95

You will see that I've cheated and used only the central portion of the
screen. If you change the constants x/%, xh%, y/% and yh%, you will soon
see the very real need for this. Also, the edge filling only consists of simple
background line re-draws. You can improve on this by using an algorithm
that can break down drawn objects into vertical and horizontal lines. I've
split the re-drawing routine up very thoroughly so that you can see where
the line re-drawing could be replaced by your improved filling algorithm.

The overprinted circles should, ideally, be sprites. As before you will need
to make allowances for the movement of these sprites when you rub them
out.

5.5.3 ARM code scrolling

This is by far the best scrolling arrangement if you want really complicated
scrolling action. It is covered more fully in the ARM code chapter, so the
only comment I'll make here, is that such routines will enable you to scroll
any part of the screen in any direction, and even two parts in different
directions.

More Dimensions

6.1 30'
Over the · last 20 years or so, there has been an enormous amount of
interest in three dimensional representation using computers. With the
event of relatively cheap and powerful domestic machines, it was only to
be expected that this would result in a rash of 3D games. There are now
reams of mathematical papers and discussion documents on 3D projection
and rotation techniques. Therefore I'll give you just enough to get started
here, with the minimum of mathematics. If you want to go further then I
suggest you read up on the subject.

6.1.1 Cartoon styles

One of the benefits of having scalable sprites is that you can construct
pseudo 3D effects in exactly the same manner as is used in cartoon
animation. Although not true 3D, the result is quite acceptable, and widely
used in many games. The principle simply revolves around the fact that the
further away an object is, the smaller it seems. Typically, in a real cartoon
and in most games, there will only be four or five distinct layers, usually
referred to as parallax layers. These are usually set out as horizontal
strips, the layer furthest away enclosing the horizon line. In Figure 6.1 you
can see how this all fits together.

For simplicity I've only shown three layers and offset them to one side for
clarity. You will see that I've also outlined the area enclosing each with
dotted lines. If you define sprites for all these sections they can be plotted
quickly, along with the objects in your game.

More Dimensions 97

Background

Foreground

Figure 6. 1: Cartoon layers

To get your objects to appear on the right layers, you will need to plot them
in the right order. The background scene should be plotted first, then any
objects intended to be immediately in front of that layer. Next you plot the
middle scenes, followed by the sprites on these layers. Finally you plot the
foreground scene, and any very prominent objects. As you can see, you
don't need to plot the parts of the scenes covered by layers that are to be
nearer the front, so your sprites only need to be just big enough to ensure
that no gaps appear between the levels. Also, you don't need to plot any
object sprites wholly behind one of the intermediate layers, thus saving
processor time. Even so, you may find that you either have to keep all
other game activities to the absolute minimum, or use your own ARM code
sprite routine.

6.1.2 Scaling

The apparent distance from the viewer is determined by a scaling factor
derived from the theoretical distance of the viewer from the screen, as well
as the size of the objects that are to seem nearest. As you can't control the
actual viewing distance, all you can do is make sure that the foreground
objects are of a size and type that gives the illusion of pushing the
foreground back to where you want it. For this to be effective you have to

98 Archimedes Game Maker's Manual

give the viewer some idea of the size of at least one object. In car racing
games, for example, a pair of hands on a steering wheel are often shown
as foreground objects. Everyone knows how big their hands are so they
make a subconscious adjustment to bring the observed view into scale.

Also, it won't help if you use an extreme theoretical viewing distance. This
would either give you a pinhole effect or at the other extreme a fisheye
lens effect. Figure 6.2 shows the effect of changing the viewing distance
on apparent sizes and distances. You will see that I have kept the screen
image size and overall distance the same for both drawings, so that you
can see how much difference just altering the viewing distance makes.
You can of course, intentionally make use of this for special effects.

Screen Object

Image

·•---s ___ ..,_. ___ o---~~

._----- -- T -------~ Screen

Object

image

.... ~---- s --- ---j ... -•-o ~
-------T-------~

Figure 6.2: Scaling factors

More Dimensions 99

The values S and T are the viewer-to-screen and total distance
respectively. To scale any object at any distance correctly, you only need a
simple piece of maths.

apparent size = real size • S I T

For various reasons it is often more practical to use the object to screen
distance, 0, rather than the total distance. One reason for this is that any
object that has moved beyond the screen towards the viewer develops a
negative value, and for plotting purposes can therefore be ignored.

Our formula then becomes:

apparent size = real size • S I (S + 0)

6.1.3 Perspective

So all you need to do is scale the sprite to the distance from the screen to
the horizon line. Well, actually no, it's a bit more complicated than that. If
your sprite is to one side of the centre line of the display, steadily reducing
its size will make it seem to veer even further to the side as it moves
backwards. This is where perspective comes in.

Without going into the mathematics of light and lenses, what normally
happens is that all objects moving away from you seem to converge on a
single point, known as the vanishing point, directly at the centre of your line
of vision. Therefore, to get realistic movement backwards and forwards you
need to scale not only the size of the sprite but also its coordinates relative
to this centre line. From the distance formula above, we can derive a
perspective factor for all our calculations on any given object.

P =SI (S + 0)

If you assume the centre line, or Z axis has a value of zero at the screen
surface, with positive values towards the vanishing point, and that all X and
Y coordinates are also relative to the centre line, you can develop the
following scaling formula:

X plot
Y plot
sprite scale

= X position • P
= Y position • P
= object size • P

Listing 6.1 shows these basic principles, and the practical application of
the mathematics. This gives you typical flat object, cartoon 3D movement,
but with rather more freedom of depth, as movement is not restricted to

100 Archimedes Game Maker's Manual

only four or five horizontal planes. As sprites are plotted from their bottom
left-hand corner, it is necessary to add a half size offset to both the X and
Y coordinates for correct positioning.

Listing 6. 1: Principles of scaling

10 REM > Cartoon
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCsprite(rocltx%,rocky%)
60 PROCstart
70 REPEAT
80 MOUSE nx%,ny%,b%
90 dx%=SGN((nx%-x%)>>4)

100 dy%=SGN((ny%-y%)>>4)
110 x%+=dx%<<4
120 y%+=dy%<<4
130 IF b%=4 z%-=64 ELSE IF b%=1 z%+=64
140 IF z%<64 z%=64
150 WAIT
160 SYS byte%,113,sc%
170 sc%=sc% EOR 3
180 SYS byte%,112,sc%
190 PROCback
200 IF z%<256 PROCmiddle
210 IF z%<100 PROCfore
220 PROCdisplay(rock%, (x%-rocltx%*2)*s%/(s%+z%), (y%-rocky%*2)*s%/(s

%+z%),s%<<2,s%<<2,s%+z%,s%+z%)
230 IF z%>255 PROCmiddle
240 IF z%>99 PROCfore
250 PROCprint
260 UNTIL FALSE
270 END
280
290 DEF PROCerror
300 MODE 12
310 IF ERR<>17 PRINT REPORT$ " @ ";ERL
320 ENDPROC
330
340 DEF PROCinitialise
350 *Pointer 1
360 MODE 15
370 MODE 13
380 PRINT TAB(lO,lO)"Please Wait"
390 SYS "OS_SWINumberFromStrinq",,"OS_SpriteOp" TO sprite%
400 SYS "OS_SWINumberFromStrinq",,"OS_Byte" TO byte%
410 DIM block% 19
420 block%!0=4
430 block%!4=5

More Dimensions

440 block%!8=-l
450 SYS "OS_ReadVduVariables",block%,block%+12
460 xeig%=block%!12
470 yeig%=block%!16
480 size%=&2000
490 DIM area% size%
500 area%!0=size%
510 area%!4=0
520 area%!8=16
530 DIM scale% 15
540 scale%!0=1
550 scale%!4=1
5 60 scale%! 8=1
570 scale%!12=1
580 init%=256+9
590 def%=256+15
600 select%=256+24
610 mask%=512+29
620 getpix%=512+41
630 putpix%=512+44
640 plot%=512+52
650 writeto%=256+60
660 style%=8
670 SYS sprite%,init%,area%
680 rockx%=202
690 rocky%=112
700 ENDPROC
710
720 DEF PROCsprite(x%,y%)
730 rock%=FNdefsprite ("rock" ,x%,y%)
740 PROCrock(x%,y%)
750 PROCmasksprite(rock%,x%,y%)
760 SYS sprite%,writeto%,area%,0
770 ENDPROC
780
790 DEF FNdefsprite(a$,x%,y%)
800 LOCAL add%
810 x%=x%>>xeig%
820 y%=y%>>yeig%
830 SYS sprite%,def%,area%,a$,0,x%,y%,MODE
840 SYS sprite%,writeto%,area%,a$
850 SYS sprite%,select%,area%,a$ TO ,,add%
860 =add%
870
880 DEF PROCrock(x%,y%)
890 GCOL %101010 TINT &CO
900 x%=x% DIV 11
910 y%=y% DIV 5
920 MOVE x%*2,y%*4
930 MOVE BY x%*4,-y%*2
940 PLOT&71,x%*3,y%
950 GCOL %101010 TINT &40

101

102

960 PLOT&51,x%*2,-y%*2
970 GCOL %010101 TINT &CO
980 MOVE BY -x%*7,-y%
990 PLOT&51,x%*2,y%*2

1000 GCOL %10101 TINT &40
1010 PLOT&71,-x%*4,y%*2
1020 ENDPROC
1030
1040 DEF PROCmasksprite(add%,x%,y%)
1050 LOCAL I%,J%,c%
1060 x%=x%>>xeiq%
1070 y%=y%>>yeiq%
1080 SYS sprite%,mask%,area%,add%
1090 FOR J%=0 TO y%-l
1100 FOR I%=0 TO x%-l

Archimedes Game Maker's Manual

1110 SYS sprite%,qetpix%,area%,add%,I%,J% TO,,,,,c%
1120 IF c%=0 SYS sprite%,putpix%,area%,add%,I%,J%
1130 NEXT
1140 NEXT
1150 ENDPROC
1160
1170 DEF PROCstart
1180· VDU 5
1190 x%=640
1200 y%=512
1210 s%=128
1220 z%=256
1230 sc%=1
1240 ORIGIN 640,512
1250 MOUSE ON
1260 ENDPROC
1270
1280 DEF PROCdisplay(add%,x%,y%,scale%!0,acale%!4,acale%!8,scale%!12)
1290 SYS sprite%,plot%,area%,add%,x%,y%,atyle%,scale%
1300 ENDPROC
1310
1320 DEF PROCback
1330 GCOL %111010
1340 RECTANGLE FILL -640,0,1280,124
1350 GCOL %101111
1360 RECTANGLE FILL -640,-128,1280,124
1370 ENDPROC
1380
1390 DEF PROCmiddle
1400 GCOL %100101
1410 RECTANGLE FILL -640,128,1280,156
1420 GCOL %1110
1430 RECTANGLE FILL -640,-288,1280,156
1440 ENDPROC
1450
1460 DEF PROCfore
1470 GCOL %010000

More Dimensions

1480 RECTANGLE FILL -640,288,1280,220
1490 GCOL %1001
1500 RECTANGLE FILL -640,-512,1280,220
1510 ENDPROC
1520 :
1530 DEF PROCprint
1540 GCOL %111111
1550 MOVE -400,440
1560 PRINT "The mouse moves the rock"
1570 MOVE -480,360
1580 PRINT "Use select to brinq it nearer"
1590 MOVE -480,280
1600 PRINT "Use adjust to to move it away"
1610 MOVE -320,200
1620 PRINT "Press Escape to stop"
1630 ENDPROC

103

In the demonstration you will see the effect of the background layering as
the rock drifts downwards, apparently from behind the middle level. Moving
the rock backwards and forwards, while keeping it either high or low on the
screen, will make it jump from level to level.

For the sake of simplicity, instead of sprites I've just used filled rectangles
to represent the different background levels, and a simple distance check
to set the plotting order. However you should easily be able to see the
possibilities. With full sprite plotting I suggest you maintain an array with
the sprite pointers in it, and as objects move forward and back, you simply
swap adjacent pointers to ensure they are always plotted in the right order.

There are occasions where you can have more than one vanishing point.
These will be at the edges of the screen, or could even be right off the
screen altogether. For our purposes we'll ignore that situation though, as it
gets far too complicated.

Finally, so far we've only considered the horizon as being half way up the
screen. Depending on the type of game, it may be better to have it
somewhat below half way. Setting the sky to ground ratio at about 1.6 to 1
usually looks quite good. As a general rule, the higher the horizon, the
more you seem to look down at the scene, whereas a low horizon gives
the impression of being very close to the ground, looking up. Changing the
position of the horizon is often used in race games, and is essential for
flight simulators.

6.1.4 Wire-frame drawings

This is the most familiar form of 30 projection, and very effective if used
thoughtfully. Perspective affects any face of an object that isn't exactly at

104 Archimedes Game Maker's Manual

right angles to the viewer. This is clearly illustrated by the buildings either
side of the road in Figure 6.3. If you think of the drawing in terms of a
collection of points connected by straight lines you will see that the
perspective rules we already know can be immediately applied to individual
objects as well as the overall scene. The lines representing the depth of an
object are scaled to the perspective factor in exactly the same way as the
overall distance.

Horizon

Figure 6.3: Perspective drawing

It is usual to consider the corner points of an object from a central
reference point rather than one of the actual corners. This makes scaling
and positioning much simpler, as well as assisting collision detection. You
can maintain an array of the positions of the corner points relative to this
centre, then another array that simply lists these points, to give the actual
lines that are to be drawn.

It sometimes takes a bit of thought to get a clear picture of this. What we
have is one table looking into another. So you could have an entry in the
line list table of 2,3. These are not the actual coordinates but the index
numbers for the points table where the two sets of actual X,Y,Z
coordinates can be found. Unfortunately this is further complicated by the
fact that you need to maintain yet another array, giving the absolute

More Dimensions 105

position of each object in a given scene. Combining the relative corner
positions with the absolute object position and adding the perspective
factor, will then give you the actual screen plotting points for every line.

Listing 6.2 shows this in action. A wire-frame cube can be moved and
rotated in all planes. However, you should bear in mind that, as it stands,
the system works only for a fixed viewpoint relative to the absolute centre
of the game scene, this being a point, apparently at the surface of the
screen. The program has been kept as simple as possible, so movement is
a little jerky, but as you will see later, this can be improved.

Listing 6.2: Wire frame drawing and rotation

10 REM > WireFrame
20 :
30 ON ERROR PROCerror
40 PROCinitialise
50 REPEAT
60 PROCmove
70 WAIT
80 SYS byte%,113,sc%
90 sc%=sc% EOR 3

100 SYS byte%,112,sc%
110 CLS
120 PROCprint
130 PROCdraw
140 UNTIL FALSE
150 END
160 :
170 DEF PROCerror
180 MODE 12
190 *FX 21
200 IF ERR<> 17 PRINT REPORT$ " @ ";ERL
210 END
220 :
230 DEF PROCinitialise
240 MODE 12
250 MODE 9
260 OFF
270 SYS "OS_SWINumberFromString",,"OS_Byte" TO byte%
280 sc%=1
290 ORIGIN 640,512
300 scale%=800: REM overall scaling
310 E%=FALSE: REM zero/negative Z axis flag
320 spos=SIN.l
330 sneq=SIN-.1
340 cpos=COS.l
350 cneq=COS-.1
360 RESTORE+29

106

370 READ numpoints%
380 READ numfaces%
390 READ maxlines%
400
410 DIM px%(numpoints%): REM\ final

Archimedes Game Maker's Manual

420 DIM py%(numpoints%): REM I plottinq co-ordinates
430 DIM vx(numpoints%): REM\ object
440 DIM vy(numpoints%): REM >face
450 DIM vz(numpoints%): REM I vertices
460 DIM points%(numfaces%,maxlines%)
470 DIM lines%(numfaces%)
480
490 FOR I%=0 TO numpoints%
500 READ vx(I%)
510 READ vy(I%)
520 READ vz(I%)
530 NEXT
540 READ X%
550 READ Y%
560 READ Z%
570 READ S%
580 FOR J%=0 TO numfaces%
590 READ lines%(J%)
600 FOR I%=0 TO lines%(J%)
610 READ points%(J%,I%)
620 NEXT
630 NEXT
640 ENDPROC
650 DATA 7: REM number of points
660 DATA 5:
670 DATA 3:
680

REM number of faces
REM maximum number of lines

690
700
710
720

730
740
750
760
770
780
790
800
810
820
830
840
850
860

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

-1,-1,-1:
1,-1,-1
1,1,-1
-1,1,-1
-1,-1,1
1,-1,1
1,1,1
-1,1,1

256,-128,0:
128:
3,0,1,2,3:
3,1,5,6,2
3,5,4,7,6
3,4,0,3,7
3,3,2,6,7
3,4,5,1,0

870 DEF PROCmove

REM relative points

REM qame co-ordinates
REM size
REM lines this face I point numbers

880 IF INKEY-98 X%-=8 ELSE IF INKEY-67 X%+=8

More Dimensions

890 IF INKEY-80 Y%+=8 ELSE IF INKEY-105 Y%-=8
900 IF INKEY-99 Z%+=8:E%=1 ELSE IF INKEY-74 AND E%>0 Z%-=8
910 IF INKEY-58 PROCrot(vy(),vz(),spos,cpos) ELSE IF INKEY-42 PROCro

t(vy(),vz(),sneq,cneq)
920 IF INKEY-26 PROCrot(vx(),vz(),sneq,cneq) ELSE IF INKEY-122 PROCr

ot(vx(),vz(),spos,cpos)
930 IF INKEY-57 PROCrot(vx(),vy(),spos,cpos) ELSE IF INKEY-89 PROCro

t(vx(),vy(),sneq,cneq)
940 ENDPROC
950
960 DEF PROCrot(RETURN &(),RETURN b(),s,c)
970 FOR I%=0 TO numpoints%
980 u=a(I%)
990 v=b(I%)

1000 a(I%)=u*c-v*s
1010' b(I%)=v*c+u*s
1020 NEXT
1030 ENDPROC
1040
1050 DEF PROCprint
1060 PRINT TAB(l4,l) CHR$138 " " CHR$139 " - Rotate X"
1070 PRINT TAB(l4,3) CHR$136 " " CHR$137 " - Rotate Y"
1080 PRINT TAB(l4,5) "{ } - Rotate Z"
1090 PRINT TAB(l0,7) "Z - left" SPC8 "X - right"
1100 PRINT TAB(lO, 9) "' - up" SPC9 "/ - down"
1110 PRINT TAB(3,ll) "Spacebar - back Return - forward"
1120 PRINT TAB(5,13) "Escape - stop"
1130 ENDPROC
1140
1150 DEF PROCdraw
1160 FOR J%=0 TO numfaces%
1170 IF FNcansee PROCface(lines%(J%))
1180 NEXT
1190 ENDPROC
1200
1210 DEF FNcansee
1220 IF FNset(0,2) :=FALSE
1230 =((px%(0)-px%(l))*(py%(2)-py%(1))-(py%(0)-py%(l))*(px%(2)-px%(1)

))<0
1240
1250 DEF FNset(a%,b%)
1260 FOR I%=a% TO b%
1270 E%=(vz(points%(J%,I%))*S%+Z%+scale%)
1280 IF E%>0 pers=scale%/E% ELSE I%=b%
1290 px%(I%)=(vx(points%(J%,I%))*S%+X%)*pers
1300 py%(I%)=(vy(points%(J%,I%))*S%+Y%)*pers
1310 NEXT
1320 =E%<1
1330
1340 DEF PR0Cface(n%)
1350 IF FNset(3,n%) ENDPROC
1360 GCOL J%+1

107

108

1370 MOVE px%(n%),py%(n%)
1380 FOR I%=0 TO n%
1390 DRAW px%(I%),py%(I%)
1400 NEXT
1410 ENDPROC

Archimedes Game Maker's Manual

PROCinitialise does quite a lot of work. As well as some important
constants, such as sine and cosine values, there are two others of
particular interest. The scaling factor, scale% is more or less at its optimum
value, but can be altered to see the effect. As it is, the drawn cube looks
about right. A smaller scaling factor would make it look stretched, and a
larger factor would give it a stubby appearance.

The ORIGIN command allows you to move the vanishing point either
horizontally or vertically to any part of the screen for special effects. As
shown, it is centralised for simplicity.

Also in the initialisation, there is quite a bit of data. There are figures
defined for the number of corners or points that makes up the cube, and
similar figures for faces and lines. The rest of the data is then dropped into
the appropriate arrays.

First you have a set of x,y,z offsets from the centre of the cube. These
values are dropped into the arrays vx(), vy(), and vz(). Next you have the
x,y and z absolute coordinates of the whole object in the game world,
followed by its size scaling factor.

The figures following the number of faces are put in the faces%() array.
These are not actual point coordinates, but are lists giving the order in
which points are visited. The real coordinates are those found in the first
list. This, as I pointed out earlier, takes quite a bit of thinking about to
grasp properly. It is very easy to get muddled up, so when looking at the
program I suggest you keep referring back to this.

PROCmove is a fairly straightforward negative INKEY system, to give
movement for the demonstration.

I haven't bothered much with limiting the range of movement and have
allowed the absolute object Z coordinate - not its final drawing value - to
become negative. If you use the Return key to bring the cube a long way
forward, you will see that sideways movement then gives the uncanny
impression that the object is floating just in front of the screen.

More Dimensions 109

6.1.5 Hidden lines

If you want to make your drawing look more realistic, or if you want to draw
solid faces, the first problem that becomes apparent is that of removing the
parts hidden by the bulk of the object. The solution is to consider the face
that each group of lines bounds. If the face, is pointing away from you,
towards the vanishing point, it is invisible and therefore doesn't need to be
drawn.

To determine which way the face is pointing you need to use a little vector
mathematics. In the first place you must ensure that when you construct
each face, the corner points would always be visited in the same direction,
assuming you were looking directly at the face. This is conventionally
anti-clockwise. Once you have performed all the adjustments to these
coordinates to represent the face in its correct orientation, the direction of
the final plotting points will have become clockwise if the face is pointing
away from you.

For each face you only need to use the first three pairs of coordinates and
the expression below. X1 ,Y1 X2,Y2 X3,Y3 are of course the relevant
coordinate pairs.

visible= ((X1 - X2) * (Y3 - Y2) - (Y1 - Y2) * (X3 - X2))<0

Logically, you would consider that for wire frame drawings, none of the
bounding lines need to be drawn round an invisible face, but the situation
is complicated by the fact that some of these lines are shared with other,
visible faces. Therefore you either have to find some method of
discovering which edges are visible, or you need to accept the time loss of
drawing some lines twice, as we have done in the example.

In our example program FNcansee returns the visibility result for each
face, calling PROCface if all is well. The call to FNset performs a dual
operation. The call from FNcansee calculates only the first three coordinate
pairs. The second call from PROCface completes the calculation of all
other coordinate pairs of the face for the drawing routine. This avoids
wasting a lot of time calculating points on an invisible face.

FNset performs a second function. If E% is zero, a Division by zero error
could result. If it's negative, that object face is, apparently, the wrong side
of the viewer and, therefore, can't be drawn. It is always preferable to trap
possible errors in this way, before they have actually occurred, rather than
rely on error correction later.

If you want to be more rigorous with your line drawing, it is probably
simplest to arrange a system of flags so that once a line is drawn, or has

110 Archimedes Game Maker's Manual

been declared invisible, it is marked as not being needed again. If the
calculations are separated from the actual drawing, the lines can be drawn
simply and quickly, irrespective of which face they are connected with.

6.1.6 Rotation

If you want your object to rotate, I'm afraid you have to delve into yet more
mathematics. It looks horrible but is in fact quite easy to implement.
Assumimg you want to rotate around the Z axis, only the X and Y
coordinates need to be altered:

newX = oldX • COS(angle) - oldY • SIN(angle)
newY = oldY • COS(angle) + oldX • SIN(angle)

If it's the Y axis you want to rotate around you simply exchange all the Y
terms for Z terms in the two expressions. Similarly you can swap in Z for X
if you want rotation on the X axis.

One of the features of Basic V is that you can pass whole arrays as
parameters in procedures. This is particularly useful here, because you
can produce a generalised rotation procedure for all objects and rotation
directions. You can see this in PROCrot in Listing 6.2.

A point to bear in mind is whether accuracy or speed is most important. By
defining a rotation increment and repeatedly adding it to the object
coordinates, I've chosen speed. For accuracy, you'd define your total
rotation angle for each step, then use this to produce a rotated copy of
your master array, thus eliminating cumulative errors.

6.1. 7 Matrices

Basic V, as well as supporting whole array arithmetic, also provides true
matrix multiplication. As with all the array operations, this is considerably
faster than using nested FOR-NEXT loops and picking out individual
values. This is particularly useful when you want to perform a rotation of an
object with a large number of points, or a group of objects round a
common centre.

In the fragment below, I've shown the significant points of the rotation
method. I won't go into the details of matrix manipulation. You should have
no difficulty using the transformation routines without having to understand
them.

More Dimensions

DIM obs(points-1,2)
DIM rotate(2,2)
DIM r(2,2)
x = 0.1
y = 0.02
z = 0.03
PROCtemp1ate

REM main 1oop
obs{)=obs() . rotate() :REM rotates the who1e array
PROCdraw
REM end of 1oop
REM end of everything

DEFPROCtemplate
sz=SIN(Z) : cz=COS(Z)
sy=SIN(Y):cy=COS(Y)
sx=SIN(X) : cx=COS(X)

r(O , O)= cz:r(l , O)= sz:r(2,0)= 0
r(O,l)=-sz:r(l,l)= cz:r(2,l)= 0
r(0,2)= O:r(l,2)= O:r(2,2)= 1

rotate() =r ()

r(0,0)= cy:r(l,O)= O:r(2,0)= sy
r(O,l)= O:r(l,l)= l:r(2,l)= O
r(0,2)=-sy:r(l,2)= O:r(2,2)= cy

rotate()=rotate() .r()

r(O,O)= l:r(l,O)= O:r(2,0)= 0
r(O,l)= O:r(l,l)= cx:r(2,l)= sx
r(0,2)= O:r(l,2)=-sx:r(2,2)= ex

rotate()=rotate() .r()
ENDPROC

111

The array obs contains the X,Y,Z coordinates of the whole scene to be
rotated. This could be a complex many cornered object, or a group of
simpler objects. Whereas, in the earlier example, we gained speed by
keeping the X,Y,Z object coordinates in separate arrays, you will see that
we have to use a common two dimensional array for matrix manipulation.
The payoff is that the actual rotation is performed by a single statement
that executes remarkably fast.

The rotation matrix itself is built up in PROCtemplate from three separate
matrices, one for each rotation axis. While it would have been possible to
perform the necessary mathematics to combine these matrices by hand, it
seems pointless to do so when the computer can do it for you. It is rather

112 Archimedes Game Maker's Manual

ironic that the rotation matrix can be built up with exactly the same
command used to perform the actual rotation. If you need to alter the
rotation matrix within the loop, it might well pay to use a single hand
calculated combination, as it will execute faster.

The same note about speed and accuracy applies with matrix rotation as
with the form in the earlier example.

6.1.8 Universal movement and rotation

So far we have looked at our game world, regarding the viewer as the
centre. With a game of any size, a space scenario for example, this isn't a
good idea. What you should do is maintain a map - a three dimensional
array - of all objects with their coordinates relative to some fixed central
point. By doing this, instead of moving objects relative to the viewer, you
can move them in this absolute map, and more importantly, you can move
the viewer as well in say, a space ship.

Rotating the direction of view also becomes a practical possibility. I haven't
given an example program for this, but if you want to pursue this line, I
suggest you start by regarding the viewer as another object. A good choice
for this would be object 0. This object's coordinates can be moved and
rotated in exactly the same way as any other. This has the added benefit
of giving you the capability of swapping object coordinates, and therefore
hopping from one object to another. A further benefit is that the viewer's
object can easily be incorporated into your main collision system.

The only problem then becomes that of translating the view of the whole
game world, to that of the viewing object. In the first instance, you need to
find out which objects are actually visible.

As well as being in the viewer's line of sight, objects need to be close
enough to see. With the scale factor used in the previous example, you
would can consider any object with a distance from the viewer of around
9,000 to 10,000 as being too far away to be seen.

To avoid wasting time drawing objects that are right off the side of the
screen, you can make a rough check in the face visibility procedure. If the
first pair of coordinates is well outside the normal graphic coordinate range
and the object isn't enormous, the routine can safely mark it as invisible.

More Dimensions 113

6.2 Sound
With a little imagination you can easily regard sound as another dimension
to your game, and probably a fairly essential one these days. It is certain
that your game will have a distinctly flat feel to it without any sound at all.

6.2.1 Music

Many games have background music running through them. As mentioned
earlier, if you decide to incorporate music in your game it's vital that you
also have an option to turn it off. A number of sound tracker utilities are
now available to make this quite a painless process. Having created a
music file , this is run , quite transparently, within the playing module.
Usually all you need to do is make simple SYS calls to start and stop the
music. While I strongly recommend that you use a sound tracker utility for
this reason, you can produce quite acceptable results from a home grown
Basic routine interleaved with your main game.

The Archimedes sound system trades off amplitude against number of
channels, so you don 't really want to enable any more channels than you
actually require. Having said that, it often pays to use different channels for
your music and sound effects. That way you won't have them fighting each
other for control, and producing some rather strange sounds in the
process.

The Acorn method of timing the beats of music is quite sophisticated, and
although fine for most purposes, especially in music editing programs, it is
not so easy to use inside a game loop. It is simpler to fall back on the older
method used in the 8-bit machines. This is shown in Listing 6.3.

Listing 6.3: Creating music

10 REM > Music
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCsetchans
60 PROCtitle
70 mark%=TIME
80 count%=mark%
90 REPEAT

100 IF INKEY-17 count%=TIME+&FFFFF
110 IF INKEY-102 mark%=TIME:count%=mark%
120 IF INKEY-38 SOUND 4, - 15,0,20
130 IF TIME-count%>0 PROCsound
140 WAIT
150 SYS byte%,113,sc%

114

160
170
180

sc%=sc% EOR 3
SYS byte%,112,sc%
CLS

190 PRINT text$;
200 PROCdraw
210 UNTIL FALSE
220 END
230
240 DEF PROCerror
250 MODE 12
260 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
270 VOICES 1
280 *ChannelVoice 1 WaveSynth-Beep
290 ENDPROC
300
310 DEF PROCinitialise
320 MODE 12
330 MODE 9
340 OFF
350 COLOUR 0,0,0,128
360 GCOL 2

Archimedes Game Maker's Manual

370 SYS "OS_SWINumberFromStrinq",,"OS_Byte" TO byte%
380 sc%=1
390 blobs%=3
400 DIM x%(blobs%)
410 DIM y%(blobs%)
420 D~ dx%(blobs%)
430 DIM dy%(blobs%)
440 FOR I%=0 TO blobs%
450 x%(I%)=4+RND(l277)
460 y%(I%)=4+RND(l019)
470 dx%(I%)=RND(9)-5
480 dy%(I%)=RND(9)-5
490 aize%=24
500 xmin%=5+aize%
510 ymin%=5+size%
520 xmax%=1274-size%
530 ymax%=1018-aize%
540 NEXT
550 index%=0
560 RESTORE+lO
570 READ notes%
580 DIM chan%(notea%)
590 DIM vol%(notes%)
600 DIM pitch%(notea%)
610 DIM time%(notea%)
620 FOR I%=0 TO notes%
630 READ chan%(I%),vol%(I%),pitch%(I%),time%(I%)
640 NEXT
650 ENDPROC
660 DATA 78
670 DATA 3,-15,69,60

More Dimensions 115

680 DATA 3,-13,61,60
690 DATA 3,-13,53,120
700 DATA 2,-8,5,0
710 DATA 3,-15,69,60
720 DATA 2,-8,33,0
730 DATA 3,-13,61,60
740 DATA 2,-8,5,0
750 DATA 3,-13,53,120
760
770 DATA 2,-8,21,0
780 DATA 1,-10,0,0
790 D~A 3,-15,81,60
800 DATA 2,-8,25,0
810 DATA 3, - 15,73,40
820 DATA 3,-12,73,20
830 DATA 2,-8,33,0
840 DATA 1,-10,0,0
850 DATA 3,-12,69,120
860 DATA 2,-8,21,0
870 DATA 1,-10,0,0
880 DATA 3,-15,81,60
890 DATA 2,-8,25,0
900 DATA 3,-15,73,40
910 DATA 3,-12,73,20
920 DATA 2,-8,33,0
930 DATA 1,-10,0,0
940 DATA 3,-12,69,100
950
960 DATA 3,-12,81,20
970
980 DATA 2,-8,33,0
990 DATA 1,-10,0,0

1000 DATA 3,-15,101,40
1010 DATA 3,-12,101,20
1020 DATA 2,-8,25,0
1030 DATA 3,-15,97,20
1040 DATA 3,-12,89,20
1050 DATA 3,-12,97,20
1060 DATA 2,-8,21,0
1070 DATA 1,-10,0,0
1080 DATA 3,-15,101,40
1090 DATA 3,-12,81,20
1100 DATA 3,-12,81,40
1110
1120 DATA 3,-12,81,20
1130
1140 DATA 2,-8,33,0
1150 DATA 1,-10,0,0
1160 DATA 3,-15,101,40
1170 DATA 3,-12,101,20
1180 DATA 2,-8,25,0
1190 DATA 3,-15,97,20

116

1200 DATA 3,-12,89,20
1210 DATA 3,-12,97,20
1220 DATA 2,-8,21,0
1230 DATA 1,-10,0,0
1240 DATA 3,-15,101,40
1250 DATA 3,-12,81,20
1260 DATA 3,-12,81,40
1270
1280 DATA 3,-12,81,20
1290
1300 DATA 2,-8,33,0
1310 DATA 1,-10,0,0
1320 DATA 3,-15,101,20
1330 DATA 3,-12,101,20
1340 DATA 3,-12,101,20
1350 DATA 2,-8,25,0
1360 DATA 3,-15,97,20
1370 DATA 3,-12,89,20
1380 DATA 3,-12,97,20
1390 DATA 2,-8,21,0
1400 DATA 1,-10,0,0
1410 DATA 3,-15,101,20
1420 DATA 3,-12,81,20
1430 DATA 3,-12,81,20
1440 DATA 3,-12,81,40
1450
1460 DATA 3,-12,73,20
1470
1480 DATA 2,-8,5,0
1490 DATA 1,-10,0,0
1500 DATA 3,-15,69,60
1510 DATA 2,-8,33,0
1520 DATA 3,-13,61,60
1530 DATA 2,-8,5,0
1540 DATA 3,-13,53,120
1550
1560 DEF PROCsetchans
1570 VOICES 4
1580 *ChannelVoice 1 Percussion-Soft
1590 *ChannelVoice 2 StrinqLib-Soft
1600 *ChannelVoice 3 WaveSynth-Beep
1610 *ChannelVoice 4 Percussion-Snare
1620 ENDPROC
1630
1640 DEF PROCtitle
1650 RESTORE+O
1660 READ num%
1670 FOR I%=0 TO num%
1680 READ x%,y%,t$

Archimedes Game Maker's Manual

1690 text$=text$+CHR$3l+CHR$x%+CHR$y%+t$
1700 NEXT
1710 ENDPROC

More Dimensions

1720 DATA 4
1730 DATA 5,12,Interleaved sound and qraphics
1740 DATA 8,14,Q - Quiet
1750 DATA 8,16,M - Music
1760 DATA 9;18,I - Immediate
1770 DATA 5,20,Escape to stop
1780
1790 DEF PROCsound
1800 SOUND chan%(index%),vol%(index%),pitch%(index%),10
1810 count%=time%(index%)+mark%
1820 index%+=1
1830 IF index%>notes% index%=0
1840 IF count%>mark% mark%=count% ELSE PROCsound
1850 ENDPROC
1860 :
1870 DEF PROCdraw
1880 x%()=x%()+dx%()
1890 y%()=y%()+dy%()
1900 FOR I%=0 TO blobs%
1910 CIRCLE FILL x%(I%),y%(I%),size%
1920 IF RND(50)=1 dx%(I%)=RND(9)-5:dy%(I%)=RND(9)-5
1930 IF x%(I%)<xmin% dx%(I%)=1 ELSE IF x%(I%)>xmax% dx%(I%)=-l
1940 IF y%(I%)<ymin% dy%(I%)=1 ELSE IF y%(I%)>ymax% dy%(I%)=-l
1950 NEXT
1960 ENDPROC

117

In this example four of the possible eight channels are used. Three are
dedicated to the music; and one is used for a gunfire type sound effect.
Tune data is stored as four items per note, in the form: channel, amplitude
pitch, time to next note. The whole tune is stored in an array for easy, fast
access, the pointer to the next note, index%, being incremented after each
call to PROCsound. When the whole tune has been played the pointer is
zeroed so that the tune continuously repeats.

Having a choice of channels, not only gives you the option of different
instrument sounds, as in the example, but can also be used for producing
chords.

The pitch is in quarter tones with middle C having a value of 53, provided
you haven't altered the tuning.

Time is in centi-seconds· . .You will notice that I talk in terms of time to next
note, rather than note length. This latter is fixed at 1 O in our example, but if
you use your own sound modules, and have a relatively fast tune, the final
note length may be long enough for the sound to appear continuous. Also,
you will see that in PROCsound I use a recursive call where a note length
is zero. This gives almost perfect synchronisation. Only when all eight
channels are is use, is there any significant ripple.

118 Archimedes Game Maker's Manual

The variables count% and mark% are used together to give a queueing
system that is immune to quite large time fluctuations in the game loop. To
prove the point, try changing the constant blobs% in PROCinitialise to
around 20. The animation will slow dramatically, but the tune will hardly be
affected. Actual time accuracy of each individual note is the game loop
time. In a game that runs at 50 frames per second, this accuracy is two
centi-seconds. However, because the time to next note is added on to
mark% and not TIME itself, these errors are not cumulative, and will sound
like natural note variations in normal playing.

Silencing the music is a bit of a cheat. What I've done is to force count% to
such a high value, that TIME-count% is never likely to reach zero, let alone
pass it, while the game is running. To restore the music, both count% and
mark% are brought back into range.

6.2.2 More voices

The range of voices available by default is distinctly limited, and it is almost
certain that you will need to use extra voice modules to get useful results.
At the end of this chapter is a utility that enables you to create your own
voices for music tracks, as well as giving you an interesting keyboard
player.

Once you have your voice module, whether it comes from a source like
Music Maker or from a sampler or other commercial source, you need to
integrate it into the sound system. To do this you need a procedure like the
one below. There are two distinct steps that are taken: first, the module is
loaded and the voices initialised, then each channel is assigned a voice
but in a slightly different way to our previous example.

DEF PROCattach
*RMLoad SoundMod
RESTORE+12
READ voices%
SYS "Sound_Confiqure",voiceslfs,208,48,0,0 TO

oldvc%,oldsm%,oldhd%,oldsh%
SYS "Sound_Volume",100 TO oldvl%
SYS "Sound_Tuninq",,7000 TO oldtn%
DIM oldch%(voices%)
FOR I%=l TO voices%

READ voice$
SYS "Sound_AttachVoice",I%,O TO ,oldch%(I%)
SYS "Sound_AttachNamedVoice",I%,voice$

NEXT
ENDPROC
DATA 3
DATA UserLib-Bell,UserLib-Saw,UserLib-BlockSynth

More Dimensions 119

This procedure, as well as attaching the new voices, stores a list of them
and a lot of other information about the sound system. This is very
important. You must detach your voices when your game exits, then kill
your module to release RMA to Rise OS. If you fail to do this, the machine
is liable to crash on the next RMtidy, as your, now unused, module area
could move or be overwritten, leaving the sound controller up in the air,
with pointers aimed at gibberish. The procedure below should take care of
this problem.

DEF PROCdetach
FOR I%=1 TO voices%

SYS "Sound_AttachVoice",I%,oldch%(I%)
NEXT
SYS "Sound_Tuninq",oldtn%
SYS "Sound_Volume",oldvl%
SYS "Sound_Configure",oldvc%,oldsm%,oldhd%,oldsh%
*RMKill UserVoiceLib
ENDPROC

Finally, you will see that all the most significant sound configuration
information is also read, and restored afterwards. If you use these two
procedures together, you can be assured that you will always receive the
sound system in a comprehensible form, and will always return it as you
found it.

6.2.3 Voice generator utilitiy

Listing 6.4: MusicMaker

10 REM > MusicMaker
20 :
30 ON ERROR PROCerror
40 PROCinit
50 PROCassemble
60 PROCchannels
70 MODE 12
80 PROChour(FALSE)
90 ON ERROR PROCerror

100 PROCdisplay
110 PROCmenu
120 PROCtidy
130 END
140 :
150 :
160 DEF PROCerror
170 VDU 4
180 PRINT REPORT$ " - Press a key"
190 IF GET

120

200 IF NOT INKEY TRUE ENDPROC
210 ON ERROR OFF
220 *RMREINIT SoundDMA
230 *RMREINIT SoundChannels
240 *RMREINIT SoundScheduler
250 *RMREINIT WaveSynth
260 *RMREINIT StringLib
270 *RMREINIT Percussion
280 *FX 4
290 *FX 12
300 *FX 229
310 END
320
330 DEF PROCinit
340 I%=PAGE+4
350 REPEAT
360 I%+=1
370 UNTIL I%?-l=ASC">"
380 PRINT $!%
390 VoiceSize%=&500
400 VoiceMax%=12

Archimedes Game Maker's Manual

410 DIM Module% &200,Code% VoiceSize%*VoiceMax%,Work% &40
420 DIM VoiceName%(VoiceMax%),VoiceEnable%(VoiceMax%)
430 DIM AmpEnv%(VoiceMax%),FreEnv%(VoiceMax%),WaveTable%(VoiceMax%)
440 DIM OldVoice%(VoiceMax%),OldChannel%(8)
450 DIM w%(VoiceMax%,255),par%(VoiceMax%,25),Sine%(255,9)
460 *Pointer 1
470 MOUSE OFF
480 PROChour(TRUE)
490 FOR I%=0 TO 255
500 PROChour(I% DIV 25+1)
510 Sine%(I%,O)=(RND(l)-.5)*16777216
520 FOR J%=1 TO 9
530 Sine%(I%,J%)=SIN(PI*I%*J%/128)*16777216
540 NEXT
550
560
570
580
590
600
610

NEXT
*KEY 0
*FX 4 1
*FX 229
*KEY 13
ENDPROC

I!

1
I!!

620 DEF PROCassemble
630 FOR v%=1 TO VoiceMax%
640 PROChour(lO+v%)
650 VoiceEnable%(v%)=TRUE
660 FOR I%=0 TO 2 STEP 2
670 P%=Code%+VoiceSize%*v%-VoiceSize%
680 [OPT !%
690 .VoiceBase
700 B Fill
710 B Fill

More Dimensions 121

720 B GateOn
730 B GateOff
740 B Instance
750 LDMFD Rl3!,{PC}
760 LDMFD Rl3!,{PC}
770 EQUD VoiceName%(v%)-VoiceBase
780
790 .VoiceName%(v%)
800 =FNbytes(l9)
810
820 .LogAmpPtr
830 EQUD 0
840 .WaveBase
850 EQUO 0
860 .AmpEnvPtr
870 EQUD 0
880 .FreEnvPtr
890 EQUO 0
900 .AmpEnv%(v%)
910 =FNbytes(255)
920 .FreEnv%(v%)
930 =FNbytes(255)
940 .WaveTable%(v%)
950 =FNbytes(255)
960
970 .Instance
980 STMFD Rl3!,{RO-R4}
990 ADR Rl,VoiceBase

1000 MOV RO,#AmpEnv%(v%)-VoiceBase
1010 ADD RO,RO,Rl
1020 STR RO,AmpEnvPtr
1030 MOV RO,#FreEnv%(v%)-VoiceBaae
1040 ADD RO,RO,Rl
1050 STR RO,FreEnvPtr
1060 MOV RO,#WaveTable%(v%)-VoiceBase
1070 ADD RO,RO,Rl
1080 STR RO,WaveBase
1090 MOV R0,#0
1100 MOV Rl,#0
1110 MOV R2,#0
1120 MOV R3,#0
1130 MOV R4,#9
1140 SWI "Sound_Confiqure"
1150 LOR RO, [R3,#12]
1160 STR RO,LogAmpPtr
1170 LDMFD Rl3!,{RO-R4,PC}
1180
1190 .GateOn
1200 LOMIA R9,{Rl-R8}
1210 LOR R3,AmpEnvPtr
1220 LDR R5,WaveBase
1230 LDR R6,LogAmpPtr

122 Archimedes Game Maker's Manual

1240 LDR R7,FreEnvPtr
1250 B FillGate
1260
1270 .Fill
1280 LDMIA R9, {Rl-R8}
1290 .FillGate
1300 LDRB RO, [R7],#l
1310 MOV RO,RO,ASL #24
1320 ADD R2,R2,RO,ASR #24
1330 AND Rl,Rl,#127
1340 LDRB RO, [R3],#l
1350 CMP R0,#255
1360 MOVEQ R4,#0
1370 CMPNE R4,#0
1380 MOVEQ R0,#2
1390 LDMEQFD Rl3!,{PC}
1400
1410 SUBS Rl,Rl,RO
1420 MOVMI Rl,#0
1430 LDRB Rl, [R6,Rl,LSL #1]
1440 MOV Rl,Rl,LSR #1
1450 RSB Rl,Rl,#127
1460 .FillLoop
1470 ADD R2,R2,R2,LSL #16
1480 LDRB RO, [R5,R2,LSR #24]
1490 SUBS RO,RO,Rl,LSL #1
1500 MOVMI R0,#0
1510 STRB RO, [Rl2],Rll
1520 ADD R2,R2,R2,LSL #16
1530 LDRB RO, [R5,R2,LSR #24]
1540 SUBS RO,RO,Rl,LSL #1
1550 MOVMI R0,#0
1560 STRB RO, [Rl2],Rll
1570 ADD R2,R2,R2,LSL #16
1580 LDRB RO, [R5,R2,LSR #24]
1590 SUBS RO,RO,Rl,LSL #1
1600 MOVMI R0,#0
1610 STRB RO, [Rl2],Rll
1620 ADD R2,R2,R2,LSL #16
1630 LDRB RO, [R5,R2,LSR #24]
1640 SUBS RO,RO,Rl,LSL #1
1650 MOVMI R0,#0
1660 STRB RO, [Rl2],Rll
1670 CMP Rl2,Rl0
1680 BLT FillLoop
1690 .FillExit
1700 SUB R4,R4,#l
1710 STMIB R9,{R2-R8}
1720 MOV ii.o.#8
1730 LDMFD Rl3!,{PC}
1740
1750 .GateOff

More Dimensions

1760 MOV R0,#0
1770 .FlushLoop
1780 STRB RO, [Rl2],Rll
1790 STRB RO, [Rl2],Rll
1800 STRB RO, [Rl2],Rll
1810 STRB RO, [Rl2],Rll
1820 CMP Rl2,Rl0
1830 BLT FlushLoop
1840 MOV R0,#1
1850 LDMFD Rl3!,{PC}
1860]
1870 NEXT
1880 NEXT
1890
1900 FOR I%=0 TO 2 STEP 2
1910 P%=Work%
1920 [OPT !%

1930 . Log
1940 SWI "Sound_SoundLog"
1950 SWI "Sound_LogScale"
1960 STRB RO, [R2,Rl]
1970 MOV PC , Rl4
1980 .Type
1990 =FNbytes(7)
2000]
2010 NEXT
2020 ENDPROC
2030
2040 DEF FNbytes(n%)
2050 P%+=n%
2060 =!%
2070
2080 DEF PROCchannels
2090 RESTORE +O
2100 FOR v%=1 TO Vo1ceMax%
2110 PROChour(22+v%*6)
2120 OSCLI"KEY "+STR$ v%+CHR$(v%+199)+"1M"
2130 READ a$,b$
2140 $Vo1ceName%(v%)="UserL1b-"+LEFT$(a$+STRING$(11,CHR$0),ll)
2150 FOR I%=0 TO 25
2160 par%(v%,I%)=EVAL("&"+LEFT$(b$,2))
2170 b$=MID$(b$,3)
2180 NEXT
2190 PROCf1llwave(v%)
2200 PROChour(25+v%*6)
2210 PROCenvelope(v%)
2220 SYS "Sound_InatallVo1ce",Code%+v%*Vo1ceS1ze%-Vo1ceSize%,O TO a

%,OldVoice%(v%)
2230 NEXT
2240 Vo1ce%=1
2250 FOR v%=1 TO 8
2260 SYS "Sound_AttachVo1ce",v%,O TO z%,OldChannel%(v%)

123

124

2270
2280
2290
2300
2310
2320

OFOS
2330

35
2340
2350

0435
2360

805
2370

0805
2380
2390
2400

5
2410

OBOS
2420

0
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700

VOICE v%,$VoiceName%(Voice%)
NEXT
VOICES 8
ENDPROC

Archimedes Game Maker's Manual

DATA Bell,003A0000230028002D00007F01700804FB000500000800080835
DATA HammondOrq,002Fl20DlDOOlE0023000F77047Fl015FE070500000COOll

DATA Ethereal,0161121106080806090AOF6F077Fl926FF0002030002003208

DATA Saw,00512ElC00000001000012690B7F2808FF000500000200140865
DATA Vibraphone,004701000F00010027000C7E016F041AF017060202020200

DATA Church0rq,0771071B0000000006000F6F077Fl932F8000203020200000

DATA Harpsicord,0139100El50El2100Fll007C0170080AC200020300020000

DATA Flute,13561529030001000000106E077Fl60A9E050400020200000835
DATA Horn,062E2719151308080200007C036ElE103B000202000200000705
DATA Pipe0rq,083C0014012C011A0100126003683F37FA05030002020000070

DATA BlockSynth,00170017001600280129087A0170092AFF23030002360211

DATA Fantasy,003300141800080016230A7C0454332CF522050040134011053

DEF PROCmenu
Sel%=14
REPEAT

IF Sel%>12 THEN
OFF
PROCmenu bars
MOUSE TO 560,48

ENDIF
MOUSE ON
*FX 21 9
REPEAT

MOUSE x%, y%, b%
IF y%>288 PROCedit
x%=x% DIV 208
IF x%>5 x%=5
y%=3-(y%+16) DIV 64
Sel%=x%+y%*6+1

UNTIL b%=1 OR b%=4
REPEAT

MOUSE x%,x%,z%
UNTIL z%=0
*FX 21
MOUSE OFF
VDU 28,0,31,79,24
IF Sel%>12 CLS
CASE Sel% OF

WHEN l,2,3,4,5,6,7,8,9,10,ll,12:IF b%=1 THEN

More Dimensions

2710
TRUE

2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820

IF Sel%<>Voice% VoiceEnable%(Sel%)=VoiceEnable%(Sel%) EOR

PROCmenu bars
ELSE
PROCvoice(Sel%)

ENDIF
WHEN 13:PR0Cplay
WHEN 14:PROCload
WHEN 15:PROCsave
WHEN 16: PROCrename
WHEN 17:PR0Cmodule
WHEN 18:PROCstar

END CASE
2830 UNTIL Sel%=19
2840 ENDPROC
2850
2860 DEF PROCtidy
2870 FOR v%=1 TO VoiceMax%
2880 SYS "Sound_RemoveVoice",0,0ldVoice%(v%)
2890 NEXT
2900 FOR v%=1 TO 8
2910 SYS "Sound_AttachVoice",v%,OldChannel%(v%)
2920 NEXT
2930 VOICES 1
2940 *FX 4
2950 *FX 12
2960 *FX 229
2970 MOUSE OFF
2980 ON
2990 PRINT
3000 ENDPROC
3010
3020 DEF PROCmenu bars
3030 VDU 28,0,31,79,24,12
3040 RESTORE+O
3050 FOR I%=0 TO VoiceMax%-l
3060 IF VoiceEnable%(I%+1) THEN
3070 COLOUR 0
3080 COLOUR 134
3090 ELSE
3100 COLOUR 7
3110 COLOUR 132
3120 ENDIF
3130 PRINT TAB(I% MOD 6*13,I% DIV 6*2+1) SPC 12 STRING$(11,CHR$ 8)

MID$($VoiceName%(I%+1),9)
3140 NEXT
3150 COLOUR 0
3160 COLOUR 134
3170 FOR I%=0 TO 6
3180 READ a$
3190 PRINT TAB(I% MOD 6*13,!% DIV 6*2+5) SPC 12 STRING$(11,CHR$ 8)

a$;

125

126

3200 NEXT
3210 COLOUR 7
3220 COLOUR 128
3230 ENDPROC

Archimedes Game Maker's Manual

3240 DATA Play,Load, Save,Rename,Module,MOS (*),Quit
3250
3260 DEF PROCplay
3270 V%=1
3280 OSCLI"FX 11 " +STR$ par%(Voice%,10)
3290 IF par%(Voice%,10) OSCLI"FX 12 "+STR$ par%(Voice%,10)
3300 VDU 26
3310 RESTORE+O
3320 PROCdata_J>rint(7)
3330 PROCprompt
3340 REPEAT
3350 *FX 21
3360 G%=GET
3370 IF INKEY-98:PROCkey(O)
3380 IF INKEY-82 :PROCkey(4)
3390 IF INKEY-67:PROCkey(8)
3400 IF INKEY-5l:PROCkey(l2)
3410 IF INKEY-83 :PROCkey(l6)
3420 IF INKEY-lOO:PROCkey(20)
3430 IF INKEY-84:PROCkey(24)
3440 IF INKEY-10l : PROCkey(28)
3450 IF INKEY-85 :PROCkey(32)
3460 IF INKEY-86 : PROCkey(36)
3470 IF INKEY-70:PROCkey(40)
3480 IF INKEY-102 : PROCkey(44)
3490 IF INKEY-103:PROCkey(48)
3500 IF INKEY-87:PROCkey(52)
3510 IF INKEY-104 : PROCkey(56)
3520 IF INKEY-88:PROCkey(60)
3530 IF INKEY-105:PROCkey(64)
3540 IF INKEY-97:PROCkey(20)
3550 IF INKEY-49:PROCkey(24)
3560 IF INKEY-17:PROCkey(28)
3570 IF INKEY-50:PROCkey(32)
3580 IF INKEY- 34 :PROCkey(36)
3590 IF INKEY- 18:PROCkey(40)
3600 IF INKEY-35:PR0Ckey(44)
3610 IF INKEY-52 :PROCkey(48)
3620 IF INKEY- 20:PROCkey(52)
3630 IF INKEY-36 : PROCkey(56)
3640 IF INKEY-53:PROCkey(60)
3650 IF INKEY-69:PROCkey(64)
3660 IF INKEY-54:PROCkey(68)
3670 IF INKEY-22:PROCkey(72)
3680 IF INKEY-38:PROCkey(76)
3690 IF INKEY-39:PROCkey(80)
3700 IF INKEY-55:PROCkey(84)
3710 IF INKEY-40:PROCkey(88)

More Dimensions

3720 IF INKEY-56:PROCkey(92)
3730 IF INKEY-57:PROCkey(96)
3740 IF INKEY-94:PROCkey(lOO)
3750 IF INKEY-89:PROCkey(l04)
3760 IF INKEY-47:PROCkey(l08)
3770 IF INKEY-12l:PROCkey(ll2)
3780 IF INKEY-42:PROCpitch(-l)
3790 IF INKEY-58:PR0Cpitch(l)
3800 IF G%>199 AND G%<213 PROCvoice(G%-199):PROCprompt
3810 UNTIL G%=27
3820 PRINT TAB(44,0) SPC20 TAB(45,l) SPC18
3830 ENDPROC
3840 DATA 3,1
3850
3860
3870
3880
3890
3900
3910
3920

DATA 64,26,Upper Keyboard,64,29,Lower
DATA 1,1
DATA 4,25,1 2 3
DATA 12,29,S D
DATA 7,1
DATA 1,26,tab Q w
DATA 10,30,"Z x c

3930 DEF PROCedit
3940 LOCAL Env%,Wave%,Flaq%
3950 VDU 26
3960 REPEAT
3970 MOUSE X%,Y%,B%
3980 G%=INKEY(O)
3990 IF B%=4 THEN
4000 IF Flaq%=0 PROCflaq
4010 CASE Flaq% OF

5
G H

E R
v B

4020 WHEN lO:Wave%=FNsetwave
4030 WHEN 9:PROCsetrep
4040 WHEN l,2,3:PR0Csetamp
4050 WHEN 7:Env%=FNsettrem
4060 WHEN 4,5,6:PR0Csetfre
4070 WHEN 8:Env%=FNsetvib
4080 ENDCASE
4090 ELSE
4100 Flaq%=0
4110 ENDIF
4120 UNTIL Y%<256
4130 IF Wave% PROCfillwave(Voice%)
4140 IF Env% PROCenvelope(Voice%)
4150 IF Env% OR Wave% PROCdisplay
4160 ENDPROC
4170
4180 D~ PROCload
4190 LOCAL File%,File$

6
J

T
N

4200 File$=MID$($VoiceName%(Voice%),9)
4210 PROCname("voice to load",File$)
4220 File%=0PENIN File$
4230 IF File%=0 THEN

y

M

Keyboard

8 9 0
L

u I 0
/"

127

FALSE

p \

128 Archimedes Game Maker's Manual

4240 PRINT "No such file - Press a key"
4250 IF GET
4260 ELSE
4270 FOR I\=O TO 5
4280 Type?I\=BGET#File\
4290 NEXT
4300 Type?5=13
4310 IF $Type<>"Synth" THEN
4320 PRINT "Invalid file type - Press a key"
4330 IF GET
4340 ELSE
4350 FOR I\=O TO 25
4360 INPUT#File\,par\(Voice\,I\)
4370 NEXT
4380 PROCfillwave(Voice\)
4390 PROCenvelope(Voice\)
4400 $VoiceName\(Voice\)="UserLib-"+LEFT$(File$+STRING$(11,CHR$0)
11)

4410 PROCdisplay
4420 ENDIF
4430 CLOSE#File\
4440 ENDIF
4450 ENDPROC
4460
4470 DEF PROCsave
4480 LOCAL File\,File$
4490 File$=MID$($VoiceName\(Voice\),9)
4500 PROCname("voice to save",File$)
4510 File\=OPENOUT File$
4520 IF File\ THEN
4530 BPUT#File\,"Synth"
4540 FOR I\=O TO 25
4550 PRINT#File\,par\(Voice\,I\)
4560 NEXT
4570
4580

1)

CLOSE#File\
$VoiceName\(Voice\)="UserLib-"+LEFT$(File$+STRING$(11,CHR$0),1

4590 PROCdisplay
4600 ENDIF
4610 ENDPROC
4620
4630 DEF PROCrename
4640 LOCAL Name$
4650 Name$=MID$($VoiceName\(Voice\),9)
4660 PROCname("new voice",Name$)
4670 $VoiceName\(Voice\)="UserLib-"+LEFT$(Name$+STRING$(11,CHR$0),ll)
4680 PROCdisplay
4690 ENDPROC
4700
4710 DEF PROCmodule
4720 LOCAL VoiceTotal\,File\,File$
4730 Ffle$="SMOD"

More Dimensions

4740 PROCname ("module to save", File$)
4750 FOR v%=1 TO VoiceMax%
4760 IF VoiceEnable%(v%) VoiceTotal%+=1
4770 NEXT
4780 FOR I%=0 TO 2 STEP 2
4790 P%=Module%
4800 [OPT I%

4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250

EQUD 0

EQUD Initialif.e-Module%
EQUD Finalise Module%
EQUD 0
EQUD Title-Moru1ei
EQUD Help-Mod le%
EQUD 0

.Title
EQUS File$+"- serVoiceLib"
EQUB 0
ALIGN

. Help
EQUS "User D fined Sound Voices"+MID$(TIME$,7,9)
EQUB 0
ALIGN

.VoiceNumber
=FNbytes(Voi eTotal%-l)
ALIGN

.Initialise
STMFD Rl3 ! , {~14}
ADR R2,Voice9ode
ADR R3,Voice umbers
]

FOR v%=1 TO oiceMax%
IF VoiceEn le%(v%) THEN

[OPT I%
MOV RO,R
MOV Rl,#
SWI "Sou d InstallVoice"
STRB Rl, R3],#l
ADD R2,R ,#VoiceSize%
]

ENDIF
NEXT
[OPT I%

LDMFD Rl3!,{ 15}

.Finalise
STMFD Rl3 ! , <p4}
ADR R2,Voicefumbers
ADD R3,R2,#VoiceTotal%

129

130

5260
5270
5280
5290
5300
5310
5320
5330

.FinLoop
LDRB Rl, [R2],#l
SWI "Sound RemoveVoice"
CMP R3,R2
BNE FinLoop
LDMFD Rl3 ! , {Rl5}
.VoiceCode

5340 NEXT
5350 File%=0PENOUT File$
5360 FOR I%=Module% TO VoiceCode-1
5370 BPUT# File%,?I%
5380 NEXT
5390 FOR v%=1 TO VoiceMax%
5400 IF VoiceEnable%(v%) THEN
5410 FOR I%=0 TO VoiceSize%-l

Archimedes Game Maker's Manual

5420 BPUT# File%,Code%?(I%+v%*VoiceSize%-VoiceSize%)
5430 NEXT
5440 ENDIF
5450 NEXT
5460 CLOSE# File%
5470 OSCLI "SETTYPE "+File$+" Module"
5480 ENDPROC
5490
5500 DEF PROCstar
5510 LOCAL Input$
5520 ON
5530 REPEAT
5540 INPUT"'*" Input$
5550 OSCLI Input$
5560 PRINT "Press a key";
5570 Input$=GET$
5580 UNTIL Input$<>"*"
5590 ENDPROC
5600
5610 DEF PROCdisplay
5620 VDU 28,0,23,79,0,12,5
5630 GCOL0,2
5640 RECTANGLE 0,680,512,256
5650 RECTANGLE 0,488,1024,128
5660 RECTANGLE 0,298,1024,128
5670 MOVE 0,808:PLOT 49,512,0
5680 MOVE 0,362:PLOT 49,1024,0
5690 FOR I%=0 TO 9
5700 GCOL0,3:MOVE I%*64+560,796 :PRINT"f";I%
5710 GCOL0,6:MOVE I%*64+568,764:PRINT"+";
5720 PRINT CHR$8 CHR$10"-"
5730 NEXT
5740 PROCharmonic(7)
5750 MOVE 0,808
5760 FOR I%=0 TO 255
5770 DRAW I%*2,w%(Voice%,I%)+808

More Dimensions

5780 NEXT
5790 PROCamplitude (7)
5800 PROCfrequency(7)
5810 VDU 4:0FF
5820 RESTORE+O
5830 PROCdata_J>rint(6)
5840 COLOUR 7
5850 PROCpitch(O)
5860 PRINT TAB(8,0)"f";Voice%" - "MID$($VoiceName%(Voice%),9) TAB(8
l)CHR$139" "CHR$138 TAB(57,ll);par%(Voice%,10)
5870 OSCLI"FX 11 "+STR$ par%(Voice%,10)
5880 IF par%(Voice%,10) OSCLI"FX 12 "+STR$ par%(Voice%,10)
5890 ENDPROC
5900 DATA 3,9
5910 DATA 0,0,Playing
5920 DATA 0,l,Octave,10,ll,Waveshape,50,ll,Repeat,68,13,Tremelo
5930 DATA 66,14,Depth Speed,10,17,Amplitude Envelope,68,19,Vibrato
5940 DATA 66,20,Depth Speed,10,23,Pitch Envelope
5950 DATA 6, 5
5960 DATA 62,11,+,68,15,+
5970 DATA 60,11,-,68,16,-
5980
5990 DEF PROCkey(T%)

+,68,21,+
-,68,22,-

+

6000 SOUND V%,-15,T%+par%(Voice%,25),40:V%=V%MOD8+1
6010 ENDPROC
6020
6030 DEF PROCvoice(n%)
6040 IF VoiceEnable%(n%) THEN
6050 IF Voice%<>n%
6060 Voice%=n%
6070 FOR v%=1 TO 8
6080 VOICE v%,$VoiceName%(Voice%)
6090 NEXT
6100 PROCdisplay
6110 ENDIF
6120 ENDIF
6130 ENDPROC
6140
6150 DEF PROCpitch(n%)
6160 IF n%>0 THEN
6170 IF par%(Voice%,25)<101 par%(Voice%,25)+=48
6180 ELSE
6190 IF n%<0 THEN
6200 IF par%(Voice%,25)>5 par%(Voice%,25)-=48
6210 ENDIF
6220 ENDIF
6230 PRINT TAB(l2,l);par%(Voice%,25) DIV6-8""
6240 REPEAT
6250 UNTIL NOT INKEY-42 AND NOT INKEY-58
6260 ENDPROC
6270
6280 DEF PROCflag

131

132

6290 LOCAL a%
6300 a%=X% DIV4
6310 IF Y%>636 THEN

Archimedes Game Maker's Manual

6320 IF X%>512 AND Y%>696 AND Y%<768 Flag%=10 ELSE IF X%>928 AND Y%
<672 Flag%=9

6330 ELSE
6340 IF X%<1024 THEN
6350 IF Y%>488 AND Y%<620 THEN
6360 IF a%-par%(Voice%,12)<par%(Voice%,14)-a% Flag%=1 ELSE IF a

%-par%(Voice%,14)>par%(Voice%,16)-a% Flag%=3 ELSE Flag%=2
6370 ELSE
6380 IF Y%>296 AND Y%<424 THEN
6390 IF a%<par%(Voice%,21)-a% Flag%=4 ELSE IF a%-par%(Voice%,

2l)>par%(Voice% , 16)-a% Flag%=6 ELSE Flag%=5
6400 ENDIF
6410
6420
6430
6440

g%=8
6450
6460

ENDIF
ELSE
IF X%>1036 THEN

IF Y%>482 AND Y%<544 Flag%=? ELSE IF Y%>290 AND Y%<352 Fla

ENDIF
ENDIF

6470 ENDIF
6480 ENDPROC
6490
6500 DEF FNsetwave
6510 PROCharmonic(O)
6520 N%=(X%-544)DIV64
6530 IF N%>9 N%=9
6540 IF Y%<732 AND par%(Voice%,N%)>0 par%(Voice%,N%)=par%(Voice%,N%)-

l ELSE IF par%(Voice%,N%)<127 par%(Voice%,N%)=par%(Voice%,N%)+1
6550 *FX 21
6560 PROCharmonic(7)
6570 =TRUE
6580
6590 DEF PROCsetrep
6600 COLOUR 7
6610 IF X%<992 THEN
6620 IF par%(Voice%,10)>6 par%(Voice%,10)-=l ELSE par%(Voice%,10)=0
6630 ELSE
6640 IF par%(Voice%,10)<98 AND par%(Voice%,10) par%(Voice%,10)+=1 E

LSE par%(Voice%,10)=6
6650 ENDIF
6660 PRINT TAB(57,ll);par%(Voice%,10)""
6670 PROCwait
6680 ENDPROC
6690
6700 DEF PROCsetamp
6710 PROCamplitude(O)
6720 PROCfrequency(O)
6730 IF Flag%=1 PROCsetbars(488,par%(Voice%,12),par%(Voice%,ll)) ELSE
IF Flag%=2 PROCsetbars(488,par%(Voice%,14),par%(Voice%,13)) ELSE

More Dimensions

setbars(488,par%(Voice%,16),par%(Voice%,15))
6740 IF par%(Voice%,16)<12 par%(Voice%,16)=12
6750 IF par%(Voice%,2l)>par%(Voice%,16) par%(Voice%,2l)=par%(Voice%,l

6)-1
6760 IF par%(Voice%,12)=0 par%(Voice%,12)=1
6770 IF par%(Voice%,14)<=par%(Voice%,12) par%(Voice%,14)=par%(Voice%,

12)+1 ELSE IF par%(Voice%,14)>=par%(Voice%,16) par%(Voice%,14)=par%(Vo
ice%,16)-l

6780 PROCfrequency(7)
6790 PROCamplitude(7)
6800 ENDPROC
6810
6820 DEF FNsettrem
6830 PROCamplitude(O)
6840 IF X%<1152 THEN
6850 IF Y%<508 THEN
6860 IF par%(Voice%,17)>0 par%(Voice%,17)-=l
6870 ELSE
6880 IF par%(Voice%,17)<100 par%(Voice%,17)+=1
6890 ENDIF
6900 ELSE
6910 IF Y%<508 THEN
6920 IF par%(Voice%,18)<40 par%(Voice%,18)+=1
6930 ELSE
6940 IF par%(Voice%,18)>2 par%(Voice%,18)-=l
6950 ENDIF
6960 ENDIF
6970 PROCamplitude(7)
6980 PROCwait
6990 =TRUE
7000
7010 DEF PROCsetfre
7020 LOCAL Null%
7030 IF X%<12 Null%=par%(Voice%,16)
7040 PROCfrequency(O)
7050 IF Flag%=4 PROCsetbars(360,Null%,par%(Voice%,19)) ELSE IF Flag%=

5 PROCsetbars(360,par%(Voice%,21),par%(Voice%,20)) ELSE PROCsetbars(36
0,Null%,par%(Voice%,22))

7060 IF par%(Voice%,21)<2 par%(Voice%,21)=2 ELSE IF par%(Voice%,21)>=
par%(Voice%,16) par%(Voice%,2l)=par%(Voice%,16)-l

7070 PROCfrequency(7)
7080 ENDPROC
7090
7100
7110
7120
7130
7140

DEF FNsetvib
PROCfrequency(O)
IF X%<1152 THEN

IF Y%<316 THEN
IF par%(Voice%,23)>0

7150 ELSE
par%(Voice%,23)-=l

7160 IF par%(Voice%,23)<100 par%(Voice%,23)+=1
7170 ENDIF
7180 ELSE

133

134 Archimedes Game Maker's Manual

IF Y%<316 THEN 7190
7200
7210

IF par%(Voice%,24)<36 par%(Voice%,24)+=1
ELSE

7220 IF par%(Voice%,24)>2 par%(Voice%,24)-=l
7230 ENDIF
7240 ENDIF
7250 PROCfrequency(7)
7260 PROCwait
7270 =TRUE
7280
7290 DEF PR0Csetbars(a%,RETURN H%,RETURN V%)
7300 Env%=TRUE
7310 H%=X% DIV 4
7320 V%=Y%-a%
7330 IF a%=488 THEN
7340 IF V%>127 V%=127 ELSE IF V%<0 V%=0
7350 ELSE
7360 IF V%>64 V%=64 ELSE IF V%<-64 V%=-64
7370 ENDIF
7380 IF H%>255 H%=255
7390 ENDPROC
7400
7410 DEF PROCfillwave(Voice%)
7420 FOR B%=0 TO 255
7430 A%=0
7440 FOR J%=0 TO 9
7450 IF par%(Voice%,J%) A%+=par%(Voice%,J%)*Sine%(B%,J%)
7460 NEXT
7470 w%(Voice%,B%)=A%>24
7480 C%=WaveTable%(Voice%)
7490 CALL Log
7500 NEXT
7510 ENDPROC
7520
7530 DEF PROCenvelope(Voice%)
7540 M%=AmpEnv%(Voice%)
7550 level=O
7560 PROCamp_env(par%(Voice%,ll)/par%(Voice%,12),par%(Voice%,12))
7570 PROCamp_env((par%(Voice%,13)-par%(Voice%,ll))/(par%(Voice%,14)-p

ar%(Voice%,12)),par%(Voice%,14)-par%(Voice%,12))
7580 S%=par%(Voice%,14)+par%(Voice%,18)
7590 sus=(par%(Voice%,13)-par%(Voice%,15))/(par%(Voice%,16)-par%(Voic

e%,14))*4
7600 WHILE S%<par%(Voice%,16)
7610 PROCamp_env(-sus-par%(Voice%,17)/par%(Voice%,18),par%(Voice%,18))
7620 S%+=par%(Voice%,18)
7630 IF S%<par%(Voice%,16) PROCamp_env(O,par%(Voice%,18)):S%+=par%(

Voice%,18)
7640 IF S%<par%(Voice%,16) PROCamp_env(par%(Voice%,17)/par%(Voice%,

18),par%(Voice%,18)) :S%+=par%(Voice%,18)
7650 IF S%<par%(Voice%,16) PROCamp_env(O,par%(Voice%,18)):S%+=par%(

Voice%,18)

More Dimensions

7660 ENDWHILE
7670 IF M%-AmpEnv%(Voice%)<256 ?M\=255 ELSE AmpEnv\(Voice\)?255=255
7680 M%=FreEnv%(Voice%)
7690 P:a._OCfre_env(par%(Voice%,19),l)
7700 PROCfre_env((par%(Voice%,20)-par%(Voice%,19))/(par%(Voice%,21)-l

),par\(Voice\,21))
7710 S%=par%(Voice%,2l)+par%(Voice%,24)
7720 sus=(par%(Voice%,20)-par%(Voice%,22))/(par%(Voice%,16)-par%(Voic

e\,21))*2
7730 WHILE S%<par%(Voice%,16)

135

7740 PROCfre_env(-sus-par%(Voice%,23)/par%(Voice%,24),par%(Voice%,24))
7750 S%+=par%(Voice%,24)
7760 IF S%<par%(Voice%,16) PR0Cfre_env(par%(Voice%,23)/par%(Voice%,

24),par\(Voice\,24)) :S%+=par%(Voice%,24)
7770 ENDWHILE
7780 IF M%-FreEnv%(Voice%)>255 THEN
7790 M\?255=0
7800 ELSE
7810 WHILE M%-FreEnv%(Voice%)<256
7820 ?M\=O
7830 MH=l
7840 ENDWHILE
7850 ENDIF
7860 ENDPROC
7870
7880 DEF PROCamp_env(s,n\)
7890 FOR I\=l TO n\
7900 level+=s
7910 IF leve1>127 ?M\=O ELSE IF level<O ?M\=127 ELSE ?M\=127-level
7920 M\+=l
7930 NEXT
7940 ENDPROC
7950
7960 DEF PR0Cfre_env(s%,n%)
7970 FOR I\=l TO n\
7980 ?M%=s%
7990 MH=l
8000 NEXT
8010 ENDPROC
8020
8030 DEF PROCharmonic(Col\)
8040 GCOL 0,CoU
8050 FOR I\=O TO 9
8060 MOVE I%*64+576,822:PLOT l,O,par%(Voice%,I%)
8070 NEXT
8080 ENDPROC
8090
8100 DEF PROCamplitude(Col\)
8110 GCOLO,Col\:MOVE 0,488:PLOT l,par%(Voice%,12)*4,par%(Voice%,ll)
8120 PROCpeq
8130 PLOT 1, (par\ (Voice%, 14)-par\ (Voice\, 12)) *4, (par\ (Voice\, 13) -par%

(Voice\ ,-11))

136 Archimedes Game Maker's Manual

8140 PROCpeq
8150 S%=par%(Voice%,14)+par%(Voice%,18)
8160 sus=(par%(Voice%,13)-par%(Voice%,15))/(par%(Voice%,16)-par%(Voic

e%,14))*4
8170 WHILE S%<par%(Voice%,16)
8180 PLOT 1,par%(Voice%,18)*4,-sus*par%(Voice%,18)-par%(Voice%,17)
8190 S%+=par%(Voice%,18)
8200 IF S%<par%(Voice%,16) PLOT 1,par%(Voice%,18)*4,0:S%+=par%(Voic

e%, 18)
8210 IF S%<par%(Voice%,16) PLOT 1,par%(Voice%,18)*4,par%(Voice%,17)

:S%+=par%(Voice%,18)
8220 IF S%<par%(Voice%,16) PLOT 1,par%(Voice%,18)*4,0:S%+=par%(Voic

e%,18)
8230 ENDWHILE
8240 PLOT 1, (par%(Voice%,16)-S%+par%(Voice%,18))*4,0
8250 PROCpeq
8260 ENDPROC
8270
8280 DEF PROCfrequency(Col%)
8290 GCOLO,Col%:MOVE 0,360+par%(Voice%,19)
8300 PROCpeq
8310 PLOT l,par%(Voice%,21)*4,par%(Voice%,20)-par%(Voice%,19)
8320 PROCpeq
8330 S%=par%(Voice%,21)+par%(Voice%,24)
8340 sus=(par%(Voice%,20)-par%(Voice%,22))/(par%(Voice%,16)-par%(Voic

e%,21))*2
8350 WHILE S%<par%(Voice%,16)
8360 PLOT l,par%(Voice%,24)*4,-sus*par%(Voice%,24)-par%(Voice%,23)
8370 S%+=par%(Voice%,24)
8380 IF S%<par%(Voice%,16) PLOT 1,par%(Voice%,24)*4,par%(Voice%,23)

: S%+=par%(Voice%,24)
8390 ENDWHILE
8400 PLOT 1, (par% (Voice%, 16) -S%+par% (Voice%, 24)) *4, 0
8410 PROCpeq
8420 ENDPROC
8430
8440 DEF PROCpeq
8450 IF Col% GCOL0,6 ELSE GCOLO,O
8460 PLOT 0,0,16:PLOT 1,0,-32:PLOT 1,2,0:PLOT l,0,32:PLOT 1,-2,0:PLOT

0,0,-16
8470 GCOLO,Col%
8480 ENDPROC
8490
8500 DEF PROCprompt
8510 RESTORE+O
8520 PR0Cdata_print(7)
8530 ENDPROC
8540 DATA 7,1
8550 DATA 44,0,Fl - F12 For Voices,45,1,Escape For Options
8560
8570 DEF PROCname(Text$,RETURN Old$)
8580 LOCAL x%,Input$

More Dimensions

8590 x%=17+LEN Text$
8600 ON
8610 REPEAT
8620 PRINT'"Enter name of " Text$ " > " Old$;
8630 INPUT TAB(x%,VPOS) "" Input$
8640 UNTIL LEN Input$<11
8650 IF Input$>"" Old$=Input$
8660 ENDPROC
8670 :
8680 DEF PROCdata_J>rint(Col%)
8690 REPEAT
8700 READ C%,J%
8710 COLOUR C%
8720 FOR I%=0 TO J%
8730 READ X%,Y%,a$
8740 PRINT TAB(X%,Y%)a$;
8750 NEXT
8760 UNTIL C%=Col%
8770 ENDPROC
8780 :
8790 DEF PROCwait
8800 LOCAL t%
8810 t%=TIME
8820 REPEAT UNTIL TIME-t%>10
8830 ENDPROC
8840
8850 DEF PROChour(p%)
8860 IF p%=FALSE SYS "Hourqlass_Smash" ELSE IF p%=TRUE SYS "Hourqlass

_On" ELSE SYS "Hourqlass_Percentaqe",p%
8870 ENDPROC

137

Operation of MusicMaker is fairly straightforward. The voices it creates fully
implement extended pitch control, but only partially implement extended
amplitude. Duration is implemented up to the envelope length only, infinite
sound is not possible.

O Clicking on Play will clear the other options and display your synthesiser
keyboard. Two strips of letter keys are used, laid out piano style. On this
keyboard white is for white notes and red for black notes.

o The line ZXCVB has the letter Z as the note C and the line QWERTY
with letter R as the note C one octave above Z. Up to eight notes will
sound at any time. If a ninth note is pressed the oldest one is lost.
Pressing several keys at the same time won't always realise this number
though as the negative inkey system can get confused.

138 Archimedes Game Maker's Manual

O You can step up and down octaves with the up and down cursor keys.
Octave settings are -8, 0, 8. The change is instantaneous so you don't
need to interrupt your playing when changing octaves. With -8 and no
frequency envelope in use the Z key is middle C.

0 Function keys 1 to 12 will change voices reasonably quickly, usually fast
enough for you to do this between notes while playing.

O Pressing Escape returns to the edit mode. All cyan parts of the display
are responsive to the mouse by dragging or clicking on Select. Generally
yellow is used for information, green for outline limits, and white indicates
values that can be altered.

o Clicking Select over any of the 12 listed voice names duplicates the
function key action. This not only selects voices for playing but also for
loading, saving and renaming.

o Clicking Adjust on the voices will toggle them as enabled or disabled.
Disabled voices are not selectable in play and will not be saved in the
sound module. You can't disable the currently selected voice.

O You can save the current voice by clicking on Save, or load a previously
saved one using Load. Prompts are given and filename is the displayed
voice name. Saving and loading is to the currently selected function key
number.

O Saving a voice stores all its parameters, including the current octave.
When loading a voice a check is made for file validity. Simply pressing
Return when prompted for a filename will save or load to the currently
displayed name.

O Clicking on Rename changes the name of the current voice without
altering any of its parameters.

o Clicking on Module prompts for a filename in the same way as Save and
Load, and then creates a re-locatable module of all the currently enabled
voices. Therefore a library of from 1 to 12 different voices can be
assembled.

O Octave and Repeat are not stored in the module as these are a feature
of the keyboard not the voices.

O Editing the current voice is done simply by moving the mouse to the
appropriate part of the display and clicking or dragging on the cyan
parts.

More Dimensions 139

O When dragging envelope shape markers some of the white envelope
outlines may go outside their frames. This does no harm but may give
unpredictable results . Similarly the harmonic content can be set too high.
This is easily identified by sharp re-entrant spikes in the waveshape and
a sudden harshening of the sound.

O The timbre is altered by summing sinewaves at the fundamental
frequency and its main harmonics f1 -f9. Random noise is added with fO
to give wind type sounds.

O The amplitude envelope has three variable nodes, all of which can be
changed vertically in amplitude and horizontally in time. These are
attack, decay and sustain. Tremolo depth and speed modify the sustain
phase only. It isn't usually possible to get zero tremolo amplitude, due to
the way the sustain is created in chunks. However, setting a very fast
tremolo time will tend to smooth out the steps.

o Careful selection of repeat time in conjunction with attack amplitude can
be used to get almost continuous smooth sound.

O The frequency envelope has a further three nodes. The attack and
sustain nodes can only be altered vertically by frequency deviation,
whereas decay can be altered horizontally in time as well. Vibrato depth
and speed only modify the sustain phase.

1

Arcade Games

7.1 Alien Zapping
Until the aovent of reasonably cheap processors and VDUs, this type of
game simply couldn't exist. Unlike all other types, they have no direct
parallel in the real world being, in their simplest form, a very fast reaction
test. No real world shoot-'em-up can possibly compare with the sheer
speed and volume of targets these games present.

7 .1.1 Movement tables

The most notable feature of this class of game these days is the smooth
movement of the attacking aliens as they loop, dip and dive. At first sight,
programming this looks a daunting prospect, but is in fact quite easy. On
close examination, you will find that in most games. only a few fixed
movement patterns are in fact used. These are most easily programmed
using look-up tables. These will simply consist of lists of X,Y coordinates,
to be used within the main game loop interleaved with any other movement
or animation. Bear in mind that these movement tables can be used in
both directions, and can also be used as an offset rather than absolute
plotting positions. This latter arrangement gives far more flexibility as it
allows complex manoeuvres to be initiated from any point of the display.

The only problem that remains now, is that of producing the movement
table itself. There are several ways this can be achieved. The obvious one
is to draw the movement out onto a sheet of graph paper set out as one
division per graphic unit, then pick off evenly spaced coordinate pairs.
These can be put in lines of data for reading into the array when the

Arcade Games 141

program runs. This can be extremely tedious, but is potentially very
accurate, and you can immediately see exactly what you will get.

Figure 7.1 shows how this would look. For clarity I've not drawn in the
background grid. As the objects following the path will probably be moving
quite quickly, you can afford to space out the plotting points out quite a lot.
Changing this spacing can be used to good effect. In the example,
movement will $eem slower going upwards.

Figure 7. 1: Tracking movement

Another way of handing the problem is to write a small program that uses
the mouse to draw the movement shape on-screen, while mouse clicks
store the coordinates. This can be a bit hit-and-miss, and, in reality, is only
a little faster than hand drawing. Apart from other considerations you will
still need to turn the coordinates into lines of data.

For the most elegant solution, you will almost always find that you can
break the movement down into groups of circles, arcs and straight lines.
Coordinates from these, taken during game initialisation can then be
dropped straight into the movement tables, rather than being used for
screen plotting. As well as being a neat, accurate solution, this method
doesn't require any lines of data, so will end up more efficient from all
points of view.

You can see a practical implementation of this in Listing 7.1. Character
printing has been used so that you can easily see which object is moving
where. As it stands only nine objects can be moved this way, without
screen jitter developing. You would, of course, be able to have more if you

142 Archimedes Game Maker's Manual

use sprite plotting. However, if you were to use system sprites, you can't
actually have many objects without jitter, which just underlines the need to
stick to directly addressed user sprites.

Listing 7.1: Movement using look-up tables

10 REM > Movement
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 IF INKEY 100
60 REPEAT
70 WAIT
80 SYS byte%,113,sc%
90 sc%=sc% EOR 3

100 SYS byte%,112,sc%
110 CLS
120 FOR I%=0 TO numchar%
130 n%=char%(I%)
140 IF n%>=0 PROCmove
150 NEXT
160 UNTIL FALSE
170 END
180
190 DEF PROCerror
200 MODE 12
210 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
220 ENDPROC
230
240 DEF PROCinitialise
250 MODE 12
260 MODE 9
270 COLOUR 0,128,0,0
280 PRINT TAB(8,10) "Movement Table Example"
290 PR~NT TAB(9,13) "Press Escape to stop"
300 VDU 5
310 SYS "OS_SWINumberFromStrinq",,"OS_Byte" TO byte%
320 sc%=1
330 maxpoints%=200
340 DIM x%(maxpoints%)
350 DIM y%(maxpoints%)
360 numchar%=8
370 DIM char%(numchar%)
380 char%()=-l
390 char%(0)=0
400 A%=ASC"A"
410 x%=0
420 y%=512
430 mark%=-l
440 PROCline (40)

Arcade Games

450 PR0Ccircle(l28,l)
460 PROCline(lO)
470 PROCcircle(l28,-l)
480 PROCline (55)
490 ENDPROC
500 :
510 DEF PROCline(n%)
520 FOR I%=0 TO n%
530 mark%+=1
540 x%+=12
550 x%(mark%)=x%
560 y%(mark%)=y%
570 NEXT
580 ENDPROC
590
600 DEF PR0Ccircle(rad%,dir%)
610 start=-PI/2
620 step=PI/20
630 end=start+PI*2+step
640 FOR !=start TO end STEP step
650 mark%+=1
660 x%(mark%)=x%+COS(I*dir%)*rad%
670 y%(mark%)=y%+SIN(I*dir%)*rad%+rad%*dir%
680 NEXT
690 ENDPROC
700
710 DEF PROCmove
720 MOVE x%(n%),y%(n%)
730 VDU A%+I%
740 IF n%<mark% char%(I%)+=1 ELSE char%(I%)=0
750 IF n%=4:IF I%<numchar% char%(I%+1)=0
760 ENDPROC

143

A point that needs a little explanation with this example, is that there are, in
fact, two tables. The first consists of the parallel arrays x%() and y%() .
These contain the actual plotting coordinates, and is the true movement
table. The other table is char%(). This is a list of pointers into the
movement table, so that each individual character can progress along the
movement table independently. In a more sophisticated version objects
could then traverse the table at different speeds and even in opposite
directions.

Finally, whichever method you use to generate the tables, you can always
create them in a separate program and save them as data files. These can
then be quickly and efficiently loaded into the final game.

144 Archimedes Game Maker's Manual

7 .1.2 Formations

Usually, along with one or two independent attackers, there is a large
group of aliens in a holding pattern with very little movement. This presents
a very real problem, as apart from using your own ARM code sprite
system, you'll have great difficulty moving 40 to 50 sprites round the
screen. The simplest solution is to use a special pre-defined sprite that
consists of a whole block of aliens. If you detect a collision with one of
these aliens you rub it out of the sprite, and initiate an explosion film
animation sequence with a free moving sprite, plotted on top of that alien's
position in the main sprite.

The rubbing out process can be performed by clearing individual bits from
the sprite definition. As it will be masked by the explosion sequence, it can
take several screen refreshes. This will prevent the erasure routine slowing
things down significantly. Another way to erase the alien is to temporarily
redirect output to the sprite then use the rectangle fill with the graphic
colour set to the background to overprint the offending creature.

Listing 7.2 shows all these points put together. The main sprite uses a film
animation of eight sprites. Erasure is done by rectangle filling, and the
erasure procedure is masked by an explosion sprite. For best effects this
latter should also be film animated.

Listing 7.2: Formation

10 REM > Formation
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCbuild
60 PROCstart
70 REPEAT
80 FOR J%=0 TO mark%
90 WAIT

100 SYS byte%,113,sc%
110 sc%=sc% EOR 3
120 SYS byte%,112,sc%
130 CLS
140 SYS sprite%,put%,area%,frame%(L%),x%(J%),y%(J%)
150 IF INKEY-74 AND (J% AND 7)=0 PROCshoot
160 IF INKEY-98 PROCgun(-4)
170 IF INKEY-67 PR0Cgun(4)
180 SYS sprite%,put%,area%,gun%,gx%,gy%
190 IF wipef%(L%) PR0Cwipe(wipex%(L%),wipey%(L%),wipef%(L%))
200 FOR I%=0 TO pins%

Arcade Games

210 IF wipef%(I%) SYS sprite%,put%,area%,blot%,wipex%(I%)+x%(J
%),wipey%(I%)+y%(J%)

220 IF piny%(I%) PR0Cpin(pinx%(I%),piny%(I%),wipex%(I%),wipey%
(I%),wipef%(I%))

230 NEXT
240 IF L%=0 OR L%=pins% D%=-D%
250 L%+=D%
260 NEXT
270 UNTIL FALSE
280 END
290
300 DEF PROCerror
310 VOICE l,"WaveSynth-Beep"
320 MODE 12
330 *FX 9 25
340 *FX 10 25
350 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
360 ENDPROC
370
380 DEF PROCinitialise
390 MODE 12
400 MODE 9
410 mode%=MODE
420 OFF
430 COLOUR 0,128,128,128
440 *FX 9 2
450 *FX 10 2
460 PRINT TAB(l2,6) "Alien formation"
470 PRINT TAB(2,10) "Z - left X - right
480 PRINT TAB(l4,14) "Please wait"
490 PRINT TAB(l0,18) "Press Escape to exit"

Return - fire"

500 SYS "OS_SWINumberFromString",,"OS_Byte" TO byte%
510 sc%=1
520 SYS "OS_SWINumberFromString",,"OS_SpriteOp" TO sprite%
530 DIM block% 19
540 block%!0=4
550 block%!4=5
560 block%! 8=-1
570 SYS "0S_ReadVduVariables",block%,block%+12
580 xeig%=block%!12
590 yeig%=block%!16
600 size%=&1FOOO
610 DIM area% size%
620 area%!0=size%
630 area%!4=0
640 area%!8=16
650 init%=256+9
660 def%=256+15
670 select%=256+24
680 put%=512+34
690 swap%=512+60
700 SYS sprite% , init%,area%

145

146

710 DIM frame%(?)
720
730 xmin%=8
740 xmax%=1244
750 ymin%=0
760 ymax%=800
770 asize%=24
780 ah%=12
790 av%=4
800 ax2%=asize%*2
810 ax3%=asize%*3
820 xsize%=ah%*ax3%-asize% DIV 2
830 ysize%=av%*ax3%-asize%
840 xpos%=(1280-xsize%)>>1
850 ypos%=(1024-ysize%)>>1
860
870 maxpoints%=200
880 DIM x%(maxpoints%)
890 DIM y%(maxpoints%)
900 mark%=-l
910 PR0Ccircle(64,l)
920 PR0Ccircle(64,-l)
930
940 gwide%=24
950 ghigh%=32
960 gx%=(xmax%-xmin%-gwide%)>1
970 gy%=ymin%+16
980 pins%=7
990 DIM pinx%(pina%)

1000 DIM piny%(pina%)
1010 DIM wipex%(pina%)
1020 DIM wipey%(pina%)
1030 DIM wipef%(pina%)
1040 ENDPROC
1050
1060 DEF PR0Ccircle(rad%,dir%)
1070 atep=PI/50
1080 start=step*2
1090 end=atart+PI*2-atep*2
1100 FOR I=atart TO end STEP step
1110 mark%+=1

Archimedes Game Maker's Manual

1120 x%(mark%)=xpos%+(COS(I)*rad%-rad%)*dir%
1130 y%(mark%)=ypos%+SIN(I)*rad%/3
1140 NEXT
1150 ENDPROC
1160
1170 DEF PROCbuild
1180 a=PI/2
1190 p=PI*2
1200 FOR L%=0 TO pins%
1210 SYS aprite%,def%,area%,"S"+STR$L%,0,xaize%>>xeig%,ysize%>>yeig

%,mode%

Arcade Games

1220 SYS sprite%,select%,area%,"S"+STR$L% TO ,,frame%(L%)
1230 SYS sprite%,swap%,area%,frame%(L%)
1240 PR0Cdraw(asize%+4,asize%+4,L%+6)
1250 NEXT
1260

147

1270 SYS sprite%, def%, area%, "SG", 0, (qwide%+4) >>xeig%, (ghigh%+4) >>yeig%,
mode%

1280 SYS sprite%,select%,area%,"SG" TO ,,gun%
1290 SYS sprite%,swap%,area%,qun%
1300 GCOL 7
1.310 MOVE 0,0
1320 MOVE qwide%,O
1330 PLOT 85,qwide% DIV 2,ghigh%
1340
1350 SYS sprite%,def%,area%,"SB",0, (ax2%+12)>xeig%, (ax2%+12)>yeig%,mode%
1360 SYS sprite%,select%,area%,"SB" TO ,,blot%
1370 SYS sprite%,swap%,area%,blot%
1380 GCOL 8
1390 CIRCLE FILL asize%+4,asize%+4,asize%+4
1400 ENDPROC
1410
1420 DEF PR0Cdraw(x%,y%,1%)
1430 FOR K%=0 TO av%-l
1440 FOR J%=0 TO ah%-l
1450
1460
1470
1480
1490
1500
1510

FOR I%=3 TO 1 STEP-1
dx%=x%+J%*ax3%
dy%=y%+K%*ax3%+I%
GCOL I%
MOVE dx%,dy%
MOVE dx%+COS(l%/p+I%/a)*asize%,dy%-SIN(l%/p+I%/a)*asize%
PLOT &B5,dx%-COS(l%/p+I%/a)*asize%,dy%-SIN(l%/p+I%/a)*asiz

e%
1520
1530

NEXT
NEXT

1540 NEXT
1550 ENDPROC
1560
1570 DEF PROCstart
1580 SYS sprite%,swap%,area%
1590 OFF
1600 next%=0
1610 D%=1
1620 L%=1
1630 GCOL 7
1640 PRINT TAB(l.0,1.4) "Press a key to start"
1650 VDU 7
1.660 IF GET
1670 VOICE l,"Percussion-Medium"
1680 ENDPROC
1690
1700 DEF PROCshoot
1.710 IF piny%(next%) ENDPROC

148

1720 pinx%(next%)=gx%+qwide% DIV 2
1730 piny%(next%)=gy%+ghigh%+4
1740 POINT pinx%(next%),piny%(next%)
1750 next%+=1
1760 IF next%=pins% next%=0
1770 ENDPROC
1780
1790 DEF PROCgun(x%)

Archimedes Game Maker's Manual

1800 IF gx%+x%<xmin% OR gx%+x%>xmax% ENDPROC
1810 gx%+=x%
1820 ENDPROC
1830
1840 DEF PR0Cpin(x%,RETURN y%,RETURN wx%,RETURN wy%,RETURN wf%)
1850 POINT x%,y%
1860 y%+=4
1870 IF y%>ymax% y%=0:ENDPROC
1880 IF POINT(x%,y%) AND 7 PROCcollide
1890 ENDPROC
1900
1910 DEF PROCcollide
1920 wx%=x%-x%(J%)
1930 wx%-=(wx% MOD ax3%)
1940 wy%=y%-y%(J%)
1950 wy%-=(wy% MOD ax3%)
1960 wf%=1
1970 y%=0
1980 SYS sprite%,put%,area%,blot%,wx%+x%(J%),wy%+y%(J%)
1990 VDU 7
2000 ENDPROC
2010
2020 DEF PR0Cwipe(x%,y%,RETURN f%)
2030 SYS sprite%,swap%,area%,frama%(f%-1)
2040 GCOL 0
2050 RECTANGLE FILL x%,y%,ax2%+8,ax2%
2060 SYS sprite%,swap%,area%
2070 OFF
2080 f%+=1
2090 IF f%>8 f%=0
2100 ENDPROC

By now you should be quite familiar with the techniques used for building
up the sprites and animating them. The only complication is the
interleaving of the main sprite movement, with its animation and the rest of
the game. I could have cheated and made the movement count an exact
multiple of the frames of animation, but I decided to retain the flexibility of
keeping a separate counter, L % for the animation, with D% as a switch for
running up and down through the sprite list, effectively doubling the
number of frames.

Arcade Games 149

Movement of the gun is quite straightforward and could have been
animated. In the same way, you could animate the actual firing sequence,
giving say, a little puff of smoke and a shower of sparks as it fires.

Arranging the firing of the bullets seems a bit complicated at first. Arrays
are maintained for up to eight bullets. When the firing key is pressed, the Y
coordinate of the currently selected bullet is examined to see if it is in
motion, and therefore can't be fired again. If the bullet isn't active its X
coordinate is set to the centre of the gun, and the Y coordinate to the tip. It
is then plotted for the first time and the counter for the bullets incremented
for the next free one.

Once started, each bullet will move up the screen for every pass of the
main loop, until it has either reached top of the screen or collided with an
alien. In either case its Y coordinate is set to zero, marking it as not active
any more.

In PROCcollide, the alien hit is identified by calculating its coordinates in
the overall sprite, and the absolute screen position of the sprite in its
movement track. The coordinates are marked and a flag set for the wiping
routine.

Actual erasing of the alien has to be spread through the animation
sequence as every frame has to have the alien at that position erased. You
will see that the alien wiping routine is also interleaved with the bullet
movement. This is necessary to ensure that two bullets don't claim the
same alien. Each time PROCwipe is entered screen writing is re-directed
to the main sprite, the rectangle filled and screen writing restored. The
counter is then updated. When all aliens have been erased, the counter is
zeroed to prevent further entries into the PROCwipe for that alien.

This complexity is necessary, as you can never be sure on which frame a
collision takes place. All you know is that you need to count through all of
them. There is in fact a bug in this routine. What I failed to allow for in the
original specification was the fact that if you are half way through the
animation sequence, you will still fail to erase some sprites as the routine
just counts sprites to erase. It doesn't allow for the fact that the animation
is counting up then down again. A sledgehammer cure would be simply to
double the count, and hence the explosion time. A more elegant solution
involves a flag table. I'll leave it to you to work this out if you want to.

There is considerable room for improvement in other ways, but the
essential ideas are there. It is a little jerky when everything is happening at
once, but bear in mind that this program is running in interpreted Basic, yet
is still superior to many 8-bit machines running their native machine code.

150 Archimedes Game Maker's Manual

These often used a 25 frames per second film speed, where in this
example, most of the time we manage 50 frames - the screen refresh rate.
With the type of movement of the aliens, the game could easily be run at
25 frames, doubling all the movement distances, with little loss of apparent
smoothness.

7.1.3 Flocking

A number of games in recent years have developed the idea of groups of
enemy objects homing in on the player's object. This flocking performance
is quite easy to implement. The objects that are to flock, have their
positions and movement vectors stored in common arrays. The position
elements for each flock object are compared with that of the victim, and the
movement elements altered accordingly, so that the flock is always moving
towards the victim.

Like this, the flocking is probably far too savage for most games, and the
player has little chance of escape. The usual remedy is to add a flocking
deviation, in the form of a random fluctuation in the flock object's
movement vectors. Many games then adopt an approach of reducing the
deviation with each attack wave or game level, making it progressively
harder to escape.

A Jar more subtle approach is to modify the deviation by an amount
dependent on each flock object's distance from the victim, so that as it
sees the victim it becomes steadily more determined to reach it.

You can turn the whole idea upside down, and make the flocking objects
be repelled by the player's object. This becomes more like herd action, as
with sheep and a sheepdog.

In Listing 7.3 you can see this all put together, with seven different
coloured stars as the flock, and the mouse pointer as the victim.

Listing 7.3: Flocks

10 REM > Flocks
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 :
60 REPEAT
70 WAIT
80 SYS byte%,113,sc%
90 sc%=sc% EOR 3

100 SYS byte%,112,sc%

Arcade Games

110 CLS
120 MOUSE x%,y%,b%
130 IF b%=4 REPEAT UNTIL NOT INKEY-10:repel%=1-repel%
140 vx()=x%-x()
150 vy()=y%-y()
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

330
340
350

dy()
360

distx()=vx()*vx()
di sty() =vy () *vy ()
distx () =distx () +disty()
FOR I%=0 TO num%

IF x(I%)<xmin% OR x(I%)>xmax% dx(I%)=-dx(I%) :x(I%)+=dx(I%)
IF y(I%)<ymin% OR y(I%)>ymax% dy(I%)=-dy(I%):y(I%)+=dy(I%)
GCOL !%+1

MOVE x(I%) ,y(I%)
PRINT"*";
IF distx(I%)<scatter% distx(I%)=scatter%
vx(I%)=force%*SGN vx(I%)
vy(I%)=force%*SGN vy(I%)

NEXT
vx()=vx()/distx()
vy()=vy()/distx()
dx () =dx () -vx ()
dy () =dy () -vy ()
dx ()=dx ()*damp
dy () =dy ()*damp
IF repel% x()=x()+dlc() :y()=y()+dy() ELSE x()=x()-dlc() :y()=y()-

UNTIL b%=2
3 70 *FX 112 1
380 *FX 113 1
390 END
400
410 DEF PROCerror
420 MODE 12
430 PRINT REPORT$ " @ ";ERL
440 ENDPROC
450
460 DEF PROCinitialise
470 MODE 13
480 MODE 9
490 *Pointer 1
500 SYS "OS_SWINumberFromSt rinq",,"OS_Byte" TO byte%
510 sc%=1
520 num%=6
530 DIM x(num%),y(num%)
540 DIM dx(num%) , dy(num%)
550 DIM vx(num%),vy(num%)
560 DIM distx(num%),disty(num%)
570 xmin%=-630
580 xmax%=610
590 ymin%=-490
600 ymax%=510
610 xs%=xmax%-xmin%

151

152

620 ys%=ymax%-ymin%
630 force%=6400
640 scatter%=900
650 damp=0.9
660 repel%=0
670 FOR I%=0 TO num%
680 x(I%)=(RND(xs%)-xs% DIV 2)DIV 2
690 y(I%)=(RND(ys%)-ys% DIV 2)DIV 2
700 NEXT
710 ORIGIN 640,512

Archimedes Game Maker's Manual

720 PRINT TAB(l0,7) "Flocks and Herda" TAB(5,12) "Move mouse to trac
k" TAB(5,14) "Select - toggle attract/repel" TAB(5,16) "Menu - quit"
TAB(5,20) "Any button to start";

730 REPEAT
740 MOUSE x%,y%,b%
750 UNTIL b%
760 REPEAT
770 MOUSE x%,y%,b%
780 UNTIL b%=0
790 VDU 5
800 ENDPROC

I've made very heavy use of the whole array calculations in this example.
Although making it rather long-winded and harder to follow, the program
runs about 30% faster than it would if all the calculations were done inside
the main FOR-NEXT loop. Some operations can't be performed on whole
arrays, so these are inside the loop along with the printing of the stars.

In spite of the apparent complexity, there are in fact, no new programming
ideas in this example. For each object an attractive force is calculated,
based purely on its distance from the pointer and put in vx(), vy(). This is '
used to modify the actual movement vectors dx(),dy(), which in turn modify
the X,Y coordinates of the object. Finally, a damping factor is used on
dx(),dy() to prevent oscillations building up to ridiculous amplitudes.

The repel% flag determines whether the movement vector is subtracted or
added, thus giving attraction or repulsion .

In the FOR-NEXT loop a check is made against scatter% to see if an
object has got too close to the pointer. It stops the acceleration becoming
too fierce and guards against any possible zero division. You will see that
I've cheated by using the square of the distance to speed things up.

The screen limit testing is only really necessary to stop repelled objects
going right off the screen.

In a game using this technique, a degree of randomness can still be
retained, and you can use the various game levels and attack waves to set

Arcade Games 153

the number of flock objects and the distance at which they first seem to
become aware of the victim.

A further enhancement to flocking can be provided by making all the flock
objects tend to repel each other. This will result in a very realistic jostling
action . This is most easily done with pixel collision detection in the main
collision detection routine.

7.2 Rebounds
Probably the best known rebound game is Breakout, in all its many guises.
One of the attractions of the earlier forms, both for players and
programmers, is the limited freedom of the movement of the ball. This is
usually restricted to one of eight possible directions, as shown in Figure
7.2. With the usual rectangular play area, and rectangular objects, you will

* Movement
Directions

Edge Collisions

Object Collisions
Figure 7.2: Eight direction movement

' '

/

154 Archimedes Game Maker's Manual

see that there are very few bounce conditions that have to be met. Usually,
there is no in-flight change of speed or direction, so straight line
interpolations are adequate.

In the first two examples shown, you only need to reverse the sign of the Y
vector for your bounce. Were it a side wall that was being met, then it
would be the X vector that needed to be reversed, the Y vector changing
for a vertical bounce. The third example requires the sign of both X and Y
vectors to be reversed. Object collisions are largely the same. The only
one at all complicated is that of a collision with the corner of an object.
Three possible bounces are simply chosen at random. This gives a bit of
variety and makes the game more interesting.

It is unlikely that you'd be able to get away with such a simple structure
these days, so you have to consider more realistic bounce conditions. In
the first place you need to consider more realistic rebounds. This means,
in the extreme, taking a tangent at the point of impact and calculating X
and Y vector quantities. However, we can get very presentable results by
simply increasing the number of bounce surfaces and permissible
directions.

If you use pixel collisions with different colours for all object and border
types, then on any collision you can read off the type of bounce that must
take place with a simple case statement. For example you may have a soft
mat at the bottom of the play area, that gives a reduced vertical speed.

7.2.1 Bounce patterns

A common problem with this type of game is that of the unreachable brick.
This is caused by having a tightly controlled bounce pattern on an effective
grid that is wider spaced than the length of the smallest brick. One solution
would be to draw out all the possible bounce patterns and look for holes
where a brick might be sitting. A far more practical solution is to add a very
small random element to the X and Y coordinates on certain bounces that
you know will regularly occur.

The obvious first choice for this, in bat and ball games, is the bat itself.
Other likely points are side and top edges. However, you only need to add
this random element to a few surfaces that are guaranteed to be met.
Overdoing it will just slow the game down. This technique will ensure that
every point of the playing area is reachable, although getting the last brick
may still take quite a time.

Arcade Games 155

7.2.2 Baby Breakout

By the time you get this far, you've actually got rid of the fixed bounce patterns
completely. You will see this more clearly in Listing 7.4, a cut-down Rebound game.

Listing 7.4: Rebound

10 REM > Rebound
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCscreen
60 REPEAT
70 PROCstart
80 REPEAT
90 WAIT

100 CIRCLE FILL x%,y%,8
110 x%+=dx%
120 y%+=dy%
130 hounce%=POINT(x%,y%)
140 IF bounce% PROChounce ELSE IF qlue% x%=rx%+rw% DIV 2
150 RECTANGLE FILL rx%,ry%,rw%,rh%
160 IF INKEY-98 PROCleft ELSE IF INKEY-67 PROCriqht
170 RECTANGLE FILL rx%,ry%,rw%,rh%
180 CIRCLE FILL x%,y%,8
190 IF INKEY-74:IF qlue% qlue%=FALSE:dy%=RND(6)+3
200 UNTIL end%
210 CIRCLE FILL x%,y%,8
220 RECTANGLE FILL rx%,ry%,rw%,rh%
230 *FX 21
240 t%=TIME
250 REPEAT UNTIL TIME-t%>100
260 UNTIL hnum%=0
270 END
280
290 DEF PROCerror
300 MODE 12
310 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
320 ENDPROC
330
340 DEF PROCinitialise
350 MODE 13
360 MODE 9
370 OFF
380 COLOUR 8,192,192,192
390 COLOUR 9,96,96,96 -400 PRINT TAB(ll,7) "Basic Rebound Game" TAB(S,11) "Z - Left" T

AB(S,13) "X - Riqht" TAB(5,15) "Return - Release hall" TAB(l2,19)
"Escape to exit" TAB(ll,21) "Any key to start"

410 IF GET

156 Archimedes Game Maker's Manual

420 CLS
430 min\=30
440 rs%=12

:REM no objects to be smaller
:REM bat speed

450 rw%=196
460 rh\=32
470 ry%=min%+4
480 bw%=64
490 bh%=32
500 hb%=bw% DIV 2
510 wy%=bh%*16
520 bn%=15
530 wh%=8
540 z%=rh%+ry'ls+l2
550 s%=min%-8
560 ENDPROC
570
580 DEF PROCscreen
590 GCOL 1

:REM bat width
:REM bat heiqht
:REM bat Y axis
:REM brick width
:REM brick heiqht
:REM half brick
:REM wall position
:REM bricks per course
:REM wall heiqht
:REM ball on bat Y axis
:REM ball speed

600 RECTANGLE FILL O,O,min%,1023
610 RECTANGLE FILL 1280-min%,0,min%,1023
620 GCOL 2
630 RECTANGLE FILL 0,0,1279,min'ls
640 RECTANGLE FILL 0,1024-min%,1279,min%
650 off%=hb'ls
660 FOR J%=0 TO wh%
670 off%=off% EOR hb%
680 IF off% PROCbrick(bw%*2,wy%+bh%*J%,bw% DIV 2,bh%)
690 FOR I%=0 TO bn%+(off%>0)
700 PR0Cbrick(bw%*2+off%+bw%*I%,wy%+bh%*J%,bw%,bh%)
710 NEXT
720 IF off% PR0Cbrick(bw%*2+off%+bw%*bn%,wy%+bh%*J%,bw% DIV 2,bh%)
730 NEXT
740 GCOL 4
750 FOR I%=0 TO 8
760 GCOL 8+(I% MOD 2)
770 RECTANGLE FILL 96+I%*128,0,64,min%
780 NEXT
790
800
810
820
830
840
850
860
870
880
890

GCOL 5
MOVE 0,1023
MOVE 0,895
PLOT &55,128,1023
GCOL 6
MOVE 1279,1023
MOVE 1279-128,1023
PLOT &55,1279,895
bnum%=(bn%+l)*(wh%+l)+(wh%+l)DIV
ENDPROC

900 DEF PR0Cbrick(x%,y%,w%,h%)
910 GCOL 3
920 RECTANGLE FILL x%,y%,w%-4,h%-4
930 GCOL 4

2

Arcade Games

940 RECTANGLE x%,y%,w%-4,h%-4
950 ENDPROC
960
970 DEF PROCstart
980 end%=FALSE
990 glue%=TRUE

1000 rx%=480
1010 x%=rx%+rw% DIV 2
1020 y%=z%
1030 dx%=0
1040 dy%=0
1050 GCOL 3,7
1060 CIRCLE FILL x%,y%,8
1070 RECTANGLE FILL rx%,ry%,rw%,rh%
1080 ENDPROC
1090
1100 DEF PROCbounce
1110 a%=ABS dx%
1120 b%=ABS dy%
1130 c%=SGN dx%
1140 d%=SGN dy%
1150 CASE bounce% OF
1160 WHEN l:x%-=dx% : dx%=-dx%
1170 WHEN 2:y%-=dy%:dy%=-dy%:c%+=RND(3)-2
1180 WHEN 3,4:PR0Chit
1190 WHEN 5:x%-=dx%:y%-=dy%:SWAP dx%,dy%
1200 WHEN 6:x%-=dx%:y%-=dy%:SWAP dx%,dy%:dy%=-dy%:dx%=-dx%
1210 WHEN 7 : PR0Cbat
1220 WHEN 8:y%-=dy%:dy%=-dy% DIV 2
1230 WHEN 9:end%=TRUE
1240 ENDCASE
1250 IF a%<4 dx%=4*c% ELSE IF a%>s% dx%=s%*c%
1260 IF b%<4 dy%=4*d% ELSE IF b%>s% dy%=s%*d%
1270 VDU 7
1280 ENDPROC
1290
1300 DEF PROCleft
1310 IF rx%>min%+rs% rx%-=rs%
1320 ENDPROC
1330
1340 DEF PROCright
1350 IF rx%+rw%<1280-min%-rs% rx%+=rs%
1360 ENDPROC
1370
1380 DEF PROChit
1390 by%=y% DIV bh%*bh%
1400 y%-=dy%
1410 IF by% DIV bh% MOD 2 bx%•(x%+hb%)DIV bw%*bw%:bx%-•hb% ELSE bx%•x

% DIV bw%*bw%
1420 x%-=dx%
1430 GCOL 0
1440 RECTANGLE FILL bx% , by%,bw%,bh%

157

158

1450 GCOL 3,7
1460 dy%=-dy%
1470 IF a%<3 c%=RND(5)-3
1480 bnum%-=l
1490 IF bnum%=0 end%=TRUE
1500 ENDPROC
1510 :
1520 DEF PROCbat
1530 y%=z%
1540 dy%=b%+4

Archimedes Game Maker's Manual

1550 IF RND(9)>1 dx%+=RND(3)-2 ELSE qlue%=TRUE:dx%=0:dy%=0
1560 ENDPROC

In this example, I've deliberately kept the logical colours used looking
visibly different so that you can see how the surfaces are built up. In
practice you would make all the edges look the same colour. If you are
using more attractive sprites in a 256 colour mode, you'd probably be
better off using a combination of tints and coordinates for collisions.

By limiting the ball speed to less than the thickness of any object, I've
avoided the need for a complex look-ahead system. Also, by using
Exclusive Or plotting, any slight overlaps will go unnoticed.

Working out which brick has to be removed is done in PROChit by turning
the ball coordinates into exact brick multiples, with a half brick horizontal
offset being added for the even numbered courses. Simple rectangle filling
then erases the brick.

I've fiddled the bounce of the ball on the bat, so that the ball always sits on
top of it. This saves having to do anything special about edge hits.

A point of interest is the way the ball follows the bat when you start. This is
controlled by the flag glue%. If it is set then the ball's X coordinate is
continually adjusted to that of the centre of the bat. You could easily make
this flag a countdown timer, so that if the player doesn't release the ball
after a certain number of game loops, then it releases itself.

7.2.3 Spin

It is well worth while considering some form of allowance for forward and
reverse spin in bat and ball type rebounds. This is fairly simple to
implement, but only really practical if you allow all direction movement
instead of the eight direction forms. All you need to do is perform a rotation
of the X,Y vectors in the same way as was used for 30 rotation. The
amount of spin determines the rotation angle. The direction, of course,
relates directly. The program fragment bellow assumes dx% and dy% are
the vectors , and ang% is the amount of spin that you want to emulate.

Arcade Games

tempx%=dx%
dx%=dx%*COS(ang%)-dy%*SIN(ang%)
dy%=dy%*COS(ang%)+tempx%*SIN(ang%)

159

Normally this spin only takes effect when objects come into contact with a
solid surface. However, you can simulate drag effects of spinning objects
through air or water. To do this, continually add a tiny fraction of the spin
angle every pass of the game loop. This won't be terribly accurate, but will
look convincing enough.

7 .2.4 Gravity

Another useful extension is the ability for objects to attract or repel each
other in flight. To be realistic you have to consider how gravitation and
magnetic forces work although, again, you don't have to be too precise.
Also, I'll only look at the two body situation. If you want to go further than
that I'm afraid you'll have to delve into your physics book.

In the first place the total attractive force between two objects will be
inversely proportional to the square of the distance between them. It will
also be proportional to the product of their masses. In our game world it is
generally easiest to equate mass with size, as we already need this figure
for collision calculations. The actual deflection of each object will be
inversely proportional to the mass ratio. Armed with that information we
can produce the example of Listing 7.5

Listing 7.5: Attraction

10 REM > Attract
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PRINT TAB(30,12) "Press Escape to stop"
60 IF INKEY 100
70 FOR I%=0 TO loops%
80 flag%=FALSE
90 IF INKEY 50

100 CLG
110 READ massl%,mass2%
120 READ xl,yl,x2,y2
130 READ dxl,dyl,dx2,dy2
140 ratio=massl%/mass2%
150 PROCplot
160 REPEAT
170 WAIT
180 SYS byte%,113,sc%
190 sc%=sc% EOR 3

160

200
210
220

SYS byte%,112,sc%
CLS
dist=(x2-xl)A2+(y2-yl)A2

Archimedes Game Maker's Manual

230 IF dist<l dist=l:REM prevents division by zero
240 attract=(massl%*mass2%)/dist
250 xs%=SGN(x2-xl)
260 ys%=SGN(y2-yl)
270 dxl+=(attract/ratio*xs%)
280 dx2-=(attract*ratio*xs%)
290 dyl+=(attract/ratio*ys%)
300 dy2-=(attract*ratio*ys%)
310 xl+=dxl
320 x2+=dx2
330 yl+=dyl
340 y2+=dy2
350 PROCplot
360 IF xl<xrnin% OR xl>xrnax% flag%=TRUE
370 IF x2<xrnin% OR x2>xrnax% flag%=TRUE
380 IF y2<ymin% OR y2>ymax% flag%=TRUE
390 IF yl<ymin% OR yl>ymax% flag%=TRUE
400 IF dist<(massl%+mass2%)A2 flag%=TRUE
410 UNTIL flag%
420 NEXT
430 PRINT"'End of program"
440 END
450
460 DEF PROCerror
470 MODE 12
480 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
490 ENDPROC
500
510 DEF PROCinitialise
520 MODE 15
530 MODE 12
540 OFF
550 COLOUR 0,0,0,128
560 SYS "OS_SWINumberFromString",,"OS_Byte" TO byte%
570 sc%=1
580 xrnin%=0
590 xrnax%=1279
600 ymin%=0
610 ymax%=1023
620 RESTORE+3
630 READ loops%
640 ENDPROC
650 DATA 3
660 DATA 20,40
670 DATA 320,1000,800,1000
680 DATA 0,-1,0,-3
690 DATA 17,34
700 DATA 768,704,384,448
710 DATA -1,0, .4,0

Arcade Games

720 DATA 32,32
730 DATA 256,512,1023,512
740 DATA .4,-.75,-.4, .75
750 DATA 8,128
760 DATA 256,512,640,512
770 DATA 0,8.5,0,-.03
780 :
790 DEF PROCplot
800 GCOL 3
810 CIRCLE FILL xl,yl,massl%
820 GCOL 1
830 CIRCLE FILL x2,y2,mass2%
840 ENDPROC

161

The simulation isn't perfect, but then again neither is the mathematics
used, nor the accuracy of Basic V. However the results are quite good
enough for all but the most stringent cases.

You will see that the distance calculation is used not only for the deflection
calculations but also for collision detection. It's always rather nice when
you can make one piece of arithmetic do two jobs.

For repelling objects simply reverse the signs of the dx and dy additions
and subtractions.

7.3 Platforms
The basis for most platform games is the old table-top Snakes and
Ladders. However, instead of relying on chance dice throws, you now have
direct control of the character. Jumps and lifts take the place of the ladders
while holes, monsters and soft platforms play the part of the snakes.

One of the features most platform games have in common with the older
rebounds is that there is very restricted movement.

By the very nature of the games, platforms assume the player's character
is always on a platform of some sort. This presents a small problem when
looking at collisions. Not only do you have to look ahead in the direction
you are moving, but also down to check that the platform is still there, and
what type of platform it is. Then again, you may choose to write a game
where the player character can stick to a wall or ceiling, in which case up,
left or right may be the second direction that needs to be checked. To
complicate matters a little more, if you are handling a jump of some sort,
you may need to modify the second direction part until the completion of
the jump action.

162 Archimedes Game Maker's Manual

As usual there's more than one solution to the problem. You could keep a
list of all the coordinates where a change in direction is required, but this
would be rather tedious and inflexible. A better idea would be to use cell
collisions, and instead of marking the row of cells below the player's object,
mark the actual row that the player is on with, say, a 1 value. Now,
whichever way the object moves it will see the track of 1 s. Any other value
would be invalid for normal movement. Zero would be acceptable for
jumps, and other values would represent collision situations.

The zero value would be particularly important, as in the event of no other
movement information, either from the player or some special movement
twiddle, you would assume that gravity takes over and the object moves
gracefully down, until it is sitting over some other value. If you keep a
count of the number of cells dropped through in this way, you can decide
whether or not it was a survivable drop, and take the appropriate action.
This is shown in Listing 7.6.

Listing 7.6: Platform

%)

10 REM > Platform
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCassemble
60 REPEAT
70 PROCbuild
80 PROCdraw
90 PROCstart

100 REPEAT
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

280

FOR mark%=0 TO 7
CALL code%
monx% () =monx% () +mondx% ()
mony%()=mony%()+mondy%()
FOR I%=0 TO mons%

IF mark%=0 PROCmonmove
CIRCLE FILL monx%(I%)+half%,mony%(I%)+half%,10

NEXT

CASE objects%(nx%>>5,ny%>>5) OF
WHEN 0,15:PR0Cdrop(0,-32)
WHEN 7:mark%=7:end%=TRUE
WHEN 9,ll,13:IF count%=0 PROCsink

END CASE
IF count% PROCanimate ELSE PROCkey
CIRCLE FILL X%+half%,Y%+half%,circ%
FOR I%=0 TO mons%

IF mark%=0 objects%(monx%(I%)>>5,mony%(I%)>>5)=oldmon%(I

NEXT

Arcade Games

290 NEXT
300 UNTIL end%
310 VDU 7
320 UNTIL FALSE
330 END
340
350 DEF PROCerror
360 *FX 4
370 *FX 21
380 MODE 12
390 IF ERR<>l 7 PRINT REPORT$ " @ ";ERL
400 ENDPROC
410
420 DEF PROCinitialise
430 *FX 4 1
440 MODE 15
450 MODE 9
460 PRINT TAB(l2,6) "Platform Demo" TAB(5,9) "Z - Left" SPC 9 "X - R

ight" TAB(5, 11) "' - Up" SPC 11 "/ - Down" TAB(5, 13) "Return - Jump" S
PC 4 "Escape - Stop"

470
480 COLOUR 8,128,128,128
490 COLOUR 9, 128, l .28, 128
500 COLOUR 10,128,128,128
510 COLOUR 11,128,128,128
520 VDU 5
530 DIM objects% (39, 31) '
540 DIM plot%(39,31)
550 circ%=12
560 vert%=32-4
570 half%=16
580 maxmonatera%=9
590 DIM monx%(maxmonsters%)
600 DIM mondx%(maxmonsters%)
610 DIM mony%(maxmonsters%)
620 DIM mondy%(maxmonsters%)
630 DIM oldmon%(maxmonsters%)
640 VDU23,129,&81,&81,&FF,&81,&81,&81,&FF,&81
650 VDU23,130,&FF,&OO,&FF,&OO,&FF,&OO,&FF,&00
660 VDU23,131,&AA,&55,&AA,&55,&AA,&55,&AA,&55
670 VDU23,132,&FF,&FF,&C3,&C3,&C3,&C3,&FF,&FF
680 VDU23,136,&AA,&55,&AA,&55,&AA,&55,&AA,&55
690 VDU23,137,&00,&00,&00,&00,&AA,&55,&AA,&55
700 VDU23,138,&00,&00,&AA,&55,&00,&00,&00,&00
710 VDU23,139,&AA,&55,&00,&00,&00,&00,&00,&00
720 X%=-l
730 ENDPROC
740
750 DEFPROCassemble
760 DIM block% &100
770 block%!0=148
780 block%!4=7

163

164 Archimedes Game Maker's Manual

790 block%!8=-l
800 SYS "0S_ReadVduVariables",block%,block%+12
810 !block%=1 REM bank number
820 block%!4=block%!16
830 block%!8=block%!12
840 block%!12+=(block%!16)*2
850 block%!16+=block%!12
860
870 lowreg=O
880 highreg=7
890 bank=?
900 size=8
910 screen=9
920 memory=lO
930 end=ll
940 store=l2
950 link=l4
960 code%=block%+20
970 FOR I%=0 TO 2 STEP 2
980 P%=code%
990 [OPT I%

1000 ADR store,block%
1010 LDMIA store,{bank-end}
1020 HOV R0,#19
1030
1040
1050
1060
1070
1080
1090
1100
1110

SWI
HOV
HOV
SWI
EOR
HOV
HOV
SWI
CMP

"OS_Byte"
RO, #113
Rl,bank
"OS_Byte"
bank , bank,#3
RO, #112
Rl , bank
"OS_Byte"
bank,#2

1120 ADDEQ screen , screen,size
1130 STR bank, [store]
1140 .copy

REM screen size
REM screen start
REM stored screen start
REM stored screen end

1150 LDMIA (memory) !,{lowreg-highreg}
1160 STMIA (screen) !,{lowreg-highreg}
1170 CMP memory,end
1180 BLT copy
1190 HOV PC, link
1200 l
1210 NEXT
1220 ENDPROC
1230
1240 DEF PROCbuild
1250 RESTORE+21
1260 READ num%
1270 FOR J%=0 TO num%
1280 READ x%,y%,horiz%,count%,value%
1290 FOR I%=0 TO count%
1300 IF horiz% THEN

Arcade Games

1310 objects%(x%+I%,y%)=value%
1320 ELSE
1330 objects%(x%,y%+I%)=value%
1340 END IF
1350 NEXT
1360 NEXT
1370 READ single%
1380 FOR I%=0 TO single%
1390 READ x%,y%,value%
1400 objects%(x%,y%)=value%
1410 NEXT
1420
1430 READ num%
1440 FOR J%=0 TO num%
1450 READ x%,y%,horiz%,count%,char%
1460 FOR I%=0 TO count%
1470 IF horiz% THEN
1480 plot%(x%+I%,y%)=char%
1490 ELSE
1500 plot%(x%,y%+I%)=char%
1510 END IF
1520 NEXT
1530 NEXT
1540 READ single%
1550 FOR I%=0 TO single%
1560 READ x%,y%,char%
1570 plot%(x%,y%)=char%
1580 NEXT
1590 REM monsters must be defined after all other objects
1600 READ mons%
1610 FOR I%=0 TO mons%
1620 READ monx%(I%),mony%(I%),mondx%(I%),mondy%(I%)
1630 monx%(I%)=monx%(I%)<<5
1640 mony%(I%)=mony%(I%)<<5
1650 NEXT
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820

ENDPROC
DATA 11: REM objects
DATA 20,3,1,15,1
DATA 1,15,1,37,1
DATA 1,24,1,28,1
DATA 32,26,1,6,1
DATA 19,3,0,12,3
DATA 2,16,0,8,3
DATA 29,16,0,8,3
DATA 0,0,1,39,7
DATA 0,1,0,29,7
DATA 39,1,0,29,7
DATA 0,31,1,39,7
DATA 30,24,1,5,9
DATA 7
DATA 12,24,15
DATA 19,2,15

165

166

1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA

1,15,17
20,15,17
1,3,17
32,3,17
34,3,17
34,25,17

11: REM visible
20,2,1,15,130
1,14,1,37,130
1,23,1,28,130
32,25,1,6,130
19,2,0 , 12,129
2,15,0,8,129
29,15,0,8,129
0,0,1 , 39,132
0,1,0,29,132
39,1,0,29,132
0,31,1,39,132
30,23,1,5,136
0
12,23,131

2: REM monsters
2,15,4,0
28,3,-4,0
34,4,0,4

2110 DEF PROCdraw
2120 *FX 112 3
2130 CLS
2140 FOR J%=0 TO 39
2150 FOR I%=0 TO 31

bits

2160 GCOL plot%(J%,I%) AND 127

Archimedes Game Maker's Manual

2170 IF plot%(J%,I%) MOVE J%<<5, (I%<<5)+vert%:VDU plot%(J%,I%)
2180 NEXT
2190 NEXT
2200 E%=1
2210 *FX 112 1
2220 GCOL 7
2230 ENDPROC
2240
2250 DEF PROCstart
2260 IF X%<0 THEN
2270 PRINT TAB(5,17) "Any key to start"
2280 IF GET
2290 ENDIF
2300 X%=28<5
2310 Y%=15<5
2320 nx%=X%
2330 ny%=Y%
2340 count%=0

Arcade Games

2350 end%=FALSE
2360 ENDPROC
2370
2380 DEF PROCmorunove
2390 oldmon%(I%)=objects%(monx%(I%)>>5,mony%(I%)>>5)
2400 IF objects%(monx%(I%)>>5,mony%(I%)>>5)=17 PROCmonrev ELSE object

s%(monx%(I%)>>5,mony%(I%)>>5)=7
2410 ENDPROC
2420
2430 DEF PROCmonrev
2440 mondx%(I%)=-mondx%(I%)
2450 mondy%(I%)=-mondy%(I%)
2460 ENDPROC
2470
2480 DEF PROCsink
2490 objects%(X%>>5,Y%>>5)+=2
2500 y%=Y%-32
2510 *FX 112 3
2520 plot%(X%>>5,y%>>5)+=1
2530 GCOL 3,8
2540 MOVE X%,y%+vert%
2550 VDU plot%(X%>>5,y%>>5)
2560 *FX112 1
2570 GCOL 7
2580 ENDPROC
2590
2600 DEF PROCanimate
2610 X%+=ix%
2620 Y%+=iy%
2630 count%-=l
2640 ENDPROC
2650
2660 DEF PROCkey
2670 CASE TRUE OF
2680 WHEN INKEY-98:PROCmove(-32,0)
2690 WHEN INKEY-67:PROCmove(32,0)
2700 WHEN INKEY-80:PROCmove(0,32)
2710 WHEN INKEY-105:PR0Cmove(0,-32)
2720 WHEN INKEY-74:PR0Cmove(O,O)
2730 ENDCASE
2740 ENDPROC
2750
2760 DEF PR0Cmove(h%,v%)
2770 IF .INKEY-74 v%=64
2780 IF v%=64 OR objects%((X%+h%)>>5, (Y%+v%)>>5)AND 1 THEN
2790 nx%=X%+h%
2800 ny%=Y%+v%
2810 ix%=h%»3
2820 iy%=v%»3
2830 X%+=ix%
2840 Y%+=iy%
2850 count%=7

167

168

2860 ENDIF
2870 ENDl?ROC
2880 :
2890 DEF J?R0Cdrop(h%,v%)
2900 IF count%=0 THEN
2910 nx%=X%+h%
2920 ny%=Y%+v%
2930 ix%=h%>>3
2940 iy%=v%>>3
2950 count%=8
2960 ENDIF
2970 ENDJ?ROC

Archimedes Game Maker's Manual

Instead of restricting the player's character to move over cells marked with
the value 1, to allow for a range of additional action, the game recognises
any odd number value as being valid for the player to move on to. In the
example, this allows ladders, platforms, and soft platforms all to be
uniquely recognised.

You will see that cell collisions allow for the automatic movement of the
monsters, as well as the player. All that is needed is a marker value in the
object array at the end of each monster's track. Value 17 in used in this
instance. This allows the player to move over it unimpeded, while causing
a reversal of monster movement direction.

While using cells for the collision system, the actual coordinates have all
been kept in graphic units. This makes plotting and animation easier and
faster. Where array accessing has to be done, a simple barrel shift is all
that's necessary to find the array indices. In this example the animation
simply consists of a straight line plot. In fact you would normally use a film
animation, and for jumps you would plot out a curved trajectory taken from
a suitable movement table.

To give further flexibility, I've separated the actual platforms from their
visible representations by using two different arrays. If you go on to using a
table of sprites for creating the visible platforms, you can add all sorts of
different types of edging and platform, without having to disturb the main
sensing array. This is particularly relevant for things like brittle stalactites,
or soft and collapsing platforms. These are an essential feature in the best
games, and the crude character swapping I've done in the example just
doesn't do the idea justice.

As an added point of interest, you will see that I've modified the screen
store and copy routine so that it uses a spare screen bank. This allows the
screen to be drawn up invisibly, at a leisurely pace with ordinary drawing
commands, and also, by bank switching, allows the stored screen to be

Arcade Games 169

modified. In this example we only use the feature for soft platforms, but it is
equally applicable to picking up treasures and the like.

In the example, all the monsters have the same effect. They kill you.
However, if you keep another parallel array of monster types, you can
have different actions by bedding a different number in the main object
array. This can include collectable items.

Finally, there is a bug in the game. If you move towards one of the
monsters while, at the same time, it is moving towards you, then under
some circumstances you will miss each other. This is because, if the two
counters count% and mark% have become synchronised, your object and
the monster will simply swap places in the same loop.

7.4 Map Compression
The two dimensional grid used by the previous example can be considered
as a basic map, or more correctly a pair of maps. As shown, these are
very wasteful of memory, bearing in mind that you will need a similar pair
for every game level.

The first thing to realise is that you don't need to use full integers for the
information in the arrays. It is inconceivable that anyone would want more
than 255 different cell types or sprite blocks, so you can immediately think
about splitting up integers into four byte numbers consisting of consecutive
cells. This works particularly well if you intend to put some of the program
into ARM code.

Unfortunately the integer splitting and, where necessary, re-combining is
rather time consuming, so a better idea is to go the whole hog and use a
byte array. The program fragment below shows how a two dimensional
array can be synthesised from this in Basic.

wide%=39 : REM number of cells across - 1
high%=31 : REM number of cells down - 1
size%=(high%+1)*(wide%+1)
DIM objects% size%
REM some code
IF FNread(X%,Y%)>23 REM do something
REM more code
PR0Cwrite(X%,Y%,monstertype%)
DEF FNread(xpos%,ypos%)
=objects%?(xpos%+ypos%*wide%)
DEFPR0Cwrite(xpos%,ypos%,byte%)

objects%?(xpos%+ypos%*wide%)=byte%
ENDPROC

170 Archimedes Game Maker's Manual

If you can limit your object values and sprite list to just 16 each, you can
combine the two arrays as below.

DEF FNreadobject(xpos%,ypos%)
=(objects%?(xpos%+ypoa%*wide%))AND 15
DEF FNreadsprite(xpos%,ypos%)
=(objects%?(xpos%+ypoa%*wide%))AND 240

Object numbers are now from O to 15 and sprites are 16 to 240 in steps of
16. Barrel shifting the sprite numbers to get O to 15 numbering, while
possible, serves no useful purpose and wastes processor time.

For the size of screen we've been discussing, our map data is now only a
mere 1 ,280 bytes per level. These levels are best constructed in an editor
program of some sort, then saved as binary files. These can then be
loaded directly . If your game turns out to be really successful, you can
offer the editor program as an extra. This has been done with many
commercial releases.

As a point of interest, by using a byte array, you have the capability of
instantly switching to another level. Simply store all the levels as one
continuous line of bytes, then instead of using the array base itself, use a
pointer that can be stepped up and down in whole level blocks, as follows:

levels\=30
atep\=1280
DIM objects\ step%*levela%
point%=objects%
top%=point%+step%*(1evels%-1)
REM some code
IF donelev\ AND point%<top% point%+=atep%:PROCdrawit
REM yet more
DEF FNreadaprite(xpoa%,ypos%)
=(point%?(xpos%+ypos%*wide%))AND 240

7.5 Score Tables
There is a temptation to forget about score tables until a game has been
completely programmed. This is then hurriedly tacked on, and as a result
can be pretty awful. You should make score tables an integral part of the
game. Include bonus points achieved, completion times and the number
and type of aliens dispatched.

Quite a lot of players don't bother to put their names in, leaving a blank
entry by their score. Some programmers try to prevent this by making the
scoring routine insist on three or more letters. This just tends to irritate
players who simply want to get on. A much better approach is to set up an

Arcade Games 171

array of silly, mildly insulting, but not offensive names. If the player just hits
the return key without an entry, you pick one of these at random.

You should provide the player with the option of saving a score table,
re-loading it, and especially deleting the stored copy and starting from
scratch. Otherwise continual play will eventually produce a situation where
it is impossible for anyone to get their name on the table, which will
considerably discourage further play. At the same time it is worth
considering only saving half the table back onto the disk.

If you have a table of eight entries, which is fairly typical, only save the top
four. When you next reload the score table you add four synthesised fairly
mediocre scores at the bottom. This means that any player has a chance
of getting onto the table. Persistent average players will always have their
names saved, and the really good players can compete with each other for
the top few places.

Time spent livening up the your score table routine adds a considerable
polish, as was mentioned in the section on layouts. It is still common to
see games using the system font for score tables, either because the
programmer can't handle Acorn's fancy fonts, or through lack of disk
space.

One possible solution is to develop your own set of drawn characters. You
will have to plan them out on graph paper, then translate the lines into a
combination of MOVE, DRAW, CIRCLE, and other plot commands. These
can then be read off from lines of data. The result is very compact, albeit
tedious to develop.

An example of a score table that covers most of the points above is given
in Listing 7.7. This was originally developed on the old BBC Model B, and
the ARM code section added for extra speed, along with a few other
improvements. The routine is provided as is, but you can experiment with it
to see how it works and what the possibilities are.

Listing 7. 7: Score tables

10 REM > Scores
20 :
30 PROCinitialise
40 PROCassemble
50 PROCloadscores
60 :
70 PR0Ctable(8020)
80 PR0Ctable(6741)
90 PR0Ctable(4127)

172

100 PR0Ctable(391)
110 END
120
130 DEF PROCinitialise
140 DIM score$(8),score%(8)

150 DIM font$(94)
160 DIM code% &100

Archimedes Game Maker's Manual

170 DIM D% 100,T% 80,U% 20 REM don't use elswhere!!
180 file$="ScoreTable"
190 RESTORE+4
200 FOR I%=13 TO 90
210 READ font$(I%)
220 NEXT
230 ENDPROC
240 DATA DZONHl
250 DATA IHO@Il
260 DATA
270 DATA FHOFHlDJlBLl@'l>Ll<Jl:HlDl@OlBDlDFl
280 DATA FHOFHl=HO@ll?Fl>Gl
290 DATA @fOBLlDJlFHlDFlBDl@Bl>Dl2:l>Dl@FlRHl
300 DATA @~QBLlDJlFHlDFlBDl@Bl>Dl<FlDFlBDl@Bl>Dl<Fl:Hl<Jl>Ll
310 DATA LH0@11401RH1
320 DATA RlO.Hl@61BLlDJlFHlDFlBDl@<l>Dl<Fl:Hl<Jl>Ll
330 DATA RfO>Ll<Jl:HlDl@OlBDlDFlFHlDJlBLl@Tl>Ll<Jl:HlDl
340 DATA @lORHl.$1
350 DATA FHOFHlDJlBLl@Nl>Ll<Jl:Hl<Jl>Ll@NlBLlDJlFHlDFlBDl@Bl>Dl<Fl:H

ODl@BlBDlDFl
360 DATA @NOBDlDFlFHlDJlBLl@'l>Ll<Jl:HlDl@<lBDlDFlFHlDJlBLl
370 DATA,,,,,,
380 DATA @flBLlDJlFHlDFlBDl@*l@ZO.Hl
390 DATA LHlDJlBLl@Nl>Ll<Jl4HlJHODJlBLl@Nl>Ll<Jl6Hl@$1
400 DATA RNO>Dl<Fl:Hl<Jl>Ll@'lBLlDJlFHlDFlBDl
410 DATA LHlDJlBLl@'l>Ll<Jl4Hl@$1
420 DATA RH1.ZOLH1FZO.Hl@$1
430 DATA @ZOLH1FZO.Hl@$1
440 DATA RHO@Zl:HlF<O>Dl<Fl:Hl<Jl>Ll@'lBLlDJlFHlDFlBDl
450 DATA @11@60RHl@Z0@$1
460 DATA FHOFHl=HO@llCHO:Hl
470 DATA @NOBDlDFlFHlDJlBLl@fl
480 DATA @ll@OOR'l481L41
490 DATA RHl . HO@ll
500 DATA @11I$1Ill@$1
510 DATA @11R$1@11
520 DATA @NOBDlDFlFHlDJlBLl@'l>Ll<Jl:HlDl@Ol
530 DATA @llLHlDFlBDl@Bl>Dl<Fl4Hl
540 DATA @NOBDlDFlFHlDJlBLl@'l>Ll<Jl:HlDl@OlLHOFBl
550 DATA @llLHlDFlBDl@Bl>Dl<Fl4HlIHOI61
560 DATA @NOBDlDFlFHlDJlBLl@Nl>Ll<Jl:Hl<Jl>Ll@NlBLlDJlFHlDFlBDl
570 DATA @10RH17H0@$1
580 DATA @lO@*lBDlDFlFHlDJlBLl@fl
590 DATA @10I$1Ill
600 DATA @10E$1DllE$1Ell

Arcade Games

1

610 DATA Rll.HOR$1
620 DATA IHO@Z1IZ1.HOI61
630 DATA @10RH1.$1RH1
640 DATA, , , , ,
650 DATA @ZOBLlDJlDH1DF1BD1@81BFl>NO>Dl<Fl<Hl<Jl>Ll@LlBLlDJlDH1DF1BD

660 DATA @lO@*lBDlDFlFHlDJlBLl@Tl>Ll<Jl:HlDl
670 DATA RZO>Ll<Jl:HlDl@<lBDlDFlFHlDJlBLl
680 DATA R10@$1@NO>Dl<Fl:Hl<Jl>Ll@TlBLlDJlFH1DF1BD1
690 DATA @ROLHlDJlBLl@Jl>Ll<Jl:HlDl@<lBDlDFlFHlDJlBLl
700 DATA @HO@flBLlDJlFHlDFlBDl.<OLHl
710 DATA FLODl@DlBDlDFlFHlDJlBLl@Ll>Ll<Jl:Hl>Jl@JlBJl<Jl>Ll@JlBL

lDJlDHlDFlBDl@Fl>Dl<Fl<HlJROBJl
720 DATA @11@60BL1DJ1FH1DF1BD1@61
730 DATA GHODHl>HO@Zl>HlBMO@Il
740 DATA F<ODJlBLl@'l@MO@Il
750 DATA @ll@*ORZ17?0I91
760 DATA LHO<Jl>Ll@fl
770 DATA @]lAJlBilCFlBEl@Dl@LOBKlCJlBG1AF1@31
780 DATA @'l@BOBLlDJlFHlDF1BD1@61
790 DATA @NOBDlDFlFHlDJlBLl@Tl>Ll<Jl:HlDl@<l
800 DATA @<O@ll@BOBLlDJlFHlDFlBDl@<l>Dl<Fl:Hl<Jl>Ll
810 DATA T<O>Hl@ll@BO>Ll<Jl:HlDl@<lBDlDFlFHlDJlBLl
820 DATA @'l@BOBLlDJlFHlDFlBDl
830 DATA @NOBDlDFlFHlDJlBLl>Ll<Jl:Hl<Jl>LlBLlDJlFHlDFlBDl
840 DATA FlO@*lBDlDFlDJlBLllZOOHl
850 DATA @'0@61BD1DF1FHlDJlBLl@ZO@Ol
860 DATA @'OIOlI'l
870 DATA @'0@31AElCGlCJlBKl@Ll@DOBElCFlCilAK1@]1
880 DATA R'l.HOROl
890 DATA @'0@61BDlDFlFHlDJlBLl@ZO@*l>Dl<Fl:Hl<Jl>Ll
900 DATA @'ORHl.OlRHl
910
920 DEF PROCassemble
930 link=14
940 sp=13
950 FOR pass=O TO 2 STEP 2
960 P%=code%
970 [OPT pass
980 STMFD (sp) !,{link}
990 MOV R10,R3

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

SWI &112
SWI &100
MOV RO,R5
SWI "OS WriteC"
MOV R7,Rl
MOV R8,R2
SUB R2,R2,#4
BL char
SUB Rl,R7,#4
MOV R2,R8
MOV R3,Rl0

173

174 Archimedes Game Maker's Manual

1110 BL char
1120 MOV Rl,R7
1130 ADD R2,R8,#4
1140 MOV R3,Rl0
1150 BL char
1160 ADD Rl,R7,#4
1170 MOV R2,R8
1180 MOV R3,Rl0
1190 BL char
1200 SWI &112
1210 SWI &100
1220 MOV RO,R6
1230 SWI "OS WriteC"
1240 MOV Rl,R7
1250 MOV R2,R8
1260 MOV R3,Rl0
1270 BL frontChar
1280 LDMFD (sp) ! , {PC}
1290
1300 .frontChar
1310 STMFD (sp) ! , {link}
1320 MOV R5,Rl
1330 BL char
1340 MOV R0,#24
1350 MLA RO,R4,RO,R5
1360 LDMFD (sp) ! , {PC}
1370
1380 .char
1390 MOV R0,#4
1400 SWI "OS Plot"
1410
1420 .char_loop
1430 LDRB Rl, [R3],#l
1440 CMP Rl, #32
1450 MOVLT PC,link
1460 SUB Rl,Rl,#64
1470 MUL Rl,R4,Rl
1480 LDRB R2, [R3],#l
1490 SUB R2,R2,#72
1500 MUL R2,R4,R2
1510 LDRB RO, [R3], #1
1520 SUB RO,R0,#48
1530 SWI "OS Plot"
1540 B char_loop
1550 1
1560 NEXT
1570 ENDPROC
1580
1590 DEF PROCloadscores
1600 FOR i%=0 TO 7
1610 score$(i%)="Little Me 11

1620 score%{i%)=8000-i%*1000

Arcade Games

1630 NEXT
1640 f%=0PENIN file$
1650 IF f% THEN
1660 FOR i%=0 TO 3
1670 INPUT# f%,acore$(i%),acore%(i%)
1680 NEXT
1690 CLOSE# f%
1700 ENDIF
1710 ENDPROC
1720
1730 DEF PR0Ctable(newacore%)
1740 LOCAL I%,i%,col%
1750 MODE 12
1760 OFF
1770 IF newacore%>=acore%(7) PROCinaert
1780 PR0Coutline(256,944,"DEVILISH DEMOS",2,3,6)
1790 FOR i%=0 TO 7
1800 IF acore%(i%)=newacore% THEN
1810 col%=5
1820 newacore%+=1
1830 ELSE
1840 col%=3
1850 ENDIF

175

1860 PROCoutline(64,832-i%*96,acore$(i%)+STRING$(23-LENscore$(i%)-L
EN STR$ score%(i%),".")+STR$ score%(i%),2,l,col%)

1870 NEXT
1880 IF newscore%>=score%(3) THEN
1890 f%=0PENOUT file$
1900 FOR i%=0 TO 3
1910 PRINT# f%,acore$(i%),acore%(i%)
1920 NEXT
1930 CLOSE# f%
1940 ENDIF
1950 PROCoutline(l28,32,"Hit apacebar to play",2,6,3)
1960 REPEAT
1970 *FX 21
1980 UNTIL NOT INKEY-99
1990 REPEAT
2000 UNTIL GET=32
2010 ENDPROC
2020
2030 DEFPROCinsert
2040 LOCAL char%,i%,mark%
2050 PR0Coutline(96,800,"CONGRATULATIONS",3,3,2)
2060 IF newscore%>=score%(0) THEN
2070 PR0Coutline(224,560,"WOW",4,6,7)
2080 PR0Coutline(608,560,"Top Score",2,1,3)
2090 ELSE
2100 PROCoutline(0,656,"You have gained a place in",2,3,1)
2110 PROCoutline(0,528,"the DEMO hall .of fame.",2,3,1)
2120 ENDIF
2130 mark%=8

176

2140 REPEAT
2150 mark%-=l
2160 score$(mark%+l)=score$(mark%)
2170 score%(mark%+l)=score%(mark%)

Archimedes Game Maker's Manual

2180 UNTIL score%(mark%)>newscore% OR mark%=0
2190 IF score%(mark%)>newscore% mark%+=1
2200 score%(mark%)=newscore%
2210 i%=0
2220 char%=32
2230 U%?i%=13
2240 PROCoutline(0,336,"Please enter your name.",2,3,1)
2250 PROCoutline(0,120,"-------------",2,4,6)
2260 WHILE i%<14 AND char%<>13
2270 REPEAT
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390

char%=0
2400

")

char%=GET
IF char%=127 THEN

char%=0
IF i%>0 THEN

GCOL 0,0
RECTANGLE FILL 1%*48-52,164,56,104
i%=i%-l

ENDIF
ENDIF
IF char%>31 AND i%>12 char%=0
IF char%>=ASC "a" char%-=32
IF char%=13 AND i%=0 PROCsilly ELSE IF char%<ASC"!" AND i%=0

UNTIL char%=13 OR char%=32 OR (char%>=ASC"A" AND char%<=ASC "Z

2410 IF char%>=ASC"A" THEN
2420 IF i%>0 AND U%?(i%-1)>32 char%=char% OR 32
2430 PR0Coutline(i%*48,192,CHR$ char%,2,4,6)
2440 ENDIF
2450 U%?i%=char%
2460 i%=i%+1
2470 ENDWHILE
2480 score$(mark%)=$U%
2490 CLS
2500 ENDPROC
2510
2520 DEF PROCsilly
2530 LOCAL j%
2540 RESTORE+5
2550 FOR j%=1 TO RND(6)
2560 READ $U%
2570 NEXT
2580 i%=LEN $U%
2590 ENDPROC
2600 DATA Willie Wibble,Mickey Mouse,Fred Flatfoot,Bossy Bess,Moaning

Megan,Fuzzy Bear
2610
2620 DEFPR0Coutline(B%,C%,$T%,E%,F%,G%)

Arcade Games

2630 FOR I%=0 TO LEN $T%-l
2640 $D%=font$(T%?I%-32)
2650 B%=USR code%
2660 NEXT
2670 ENDPROC

177

The data lines are in a special highly compacted form, and each line
represents all the draw commands for a different character. Only the
numbers, upper and lower case letters, ful

1

1 stop, and minus are provided.
The other characters would just waste spa9e.

The routine first fills in a dummy score ta?le, then looks for a top half to
load from disk. There are then four demo calls to the score table covering
all the possibilities: top score, saveable Score, non saveable score and
below table score. You will notice that the I routine only actually saves the
score table if a new entry appears in the top four places.

Suitable messages are given for two scorirlg situations. A score too low is
quietly ignored to save embarrassment, and no note is made of whether a

I

score will be saved or not. You can easily change this if you want to.

Entering a player's name, not only thoroudhly traps unwanted characters,
but also intelligently sets upper and lower case letters in the name. If no
name is entered then one of six silly names is chosen at random.

Role Play
Role play games are regarded here as both a generic term and a specific
game type. As a generic term it covers all types of game where you are
taking on a simulated task of some sort, whether it be that of a band of
thieves in a forest, an airline pilot or simply a bank manager.

8.1 RPGs
Role play games as a specific game type, don't originate with computers at
all, but with people acting out character parts within a set of rules and
guidelines set out by the creator of the RPG. Generally, a world is
described where the players live, fight and perform almost all the normal

. human activities. As the scenario is artificial , the game maker can make
available whatever characteristics or new sciences he or she likes. The
favourite addition is, of course, magic.

RPGs are generally open ended. There is often no specific task to perform,
but general guidelines are given for improving your status in the game
world . From there on, as in the real world, you learn from experience. For
this reason you must be absolutely consistent in any rules you apply. Your
players will rapidly lose interest if they find that the same monster is
dispatched in total different ways simply because they meet it in a different
area of the game.

Role Play 179

RPGs fit very easily into computers. At a basic level you can write one
using entirely text instructions and keyboard input. The game can be
completely open ended, in that there need not be a specific set of tasks to
perform. This is the typical scenario of the Cells and Serpents type games.
Your players can simply wander around your artificial world picking up
treasures and becoming steadily more adept at dealing with obstacles
puzzles and monsters.

The first essential point is that you must have a map of the overall layout of
your game. This can be based on a two dimensional grid or, if the scenario
is a castle for example, you can draw out a three dimensional plan. All
treasure, wizards and monsters can be identified simply by grid reference.
If your player has the same reference, he is in the same area and you can
provide a brief description of the scene and what options are available.

This structure actually lends itself very well to desktop working as you can
use a set of icons for both objects and activity choices. These can be
dropped on a simple sprite background within a window, with mouse clicks

· over the icons for various actions. In this way no text is needed at all.

Taking a two dimensional forest game world with textual and graphic
components as an example, you can maintain a two dimensional location
map of place description strings, and a parallel array with sprite lists for the
major drawing. In this simple plan you could limit the area to between O
and B locations in both the X and Y directions. Your player starts off with
area coordinates of 4,4. In the absence of any specific alternative, the
game can assume a standard trees and shrubs background.

Although the world is two dimensional the scene can be drawn as a full
three dimensional picture. You now need a string array with a list of all the
objects, along with a parallel array giving their X,Y map coordinates and
object type. The arrays would also include the screen plotting position and
sprite number of the graphic representation. These arrays are then
scanned to see if any objects are located at 4,4, and those that are, plotted
and described.

Anything picked up should be marked as being at location -1,0. This can
be scanned when the object needs to be used, and as we have no
negative elements in the map, only the X coordinate need to be checked.
Location -2,0 can be used for objects or monsters that are destroyed or
hidden. Your game can randomly re-generate these from time to time, in
new locations. This gives you an apparently limitless supply of creatures to
use. For items that are permanently destroyed, never to be used again, I
suggest -3,0 as their location

180 Archimedes Game Maker's Manual

Using ordinary X,Y movement controls your player can move to 4,5 or 5,4
or 3,4 or 4,3. Logically, these would correspond to East, North, West and
South respectively. Obviously directions like 5,5 would give Northeast.
Once at the new location, the arrays can be scanned again and the new
scene drawn up.

In Listing 8.1 is a skeleton of just this idea, but with minimal text
descriptions rather than a graphical display.

Listing 8. 1: Role playing

10 REM > RPG
20
30 PROCinitialise
40 action%=1
50 REPEAT
60 IF action% PROCdescribe
70 action%=GET
80 CASE action% OF
90 WHEN ASC"Z":IF X%>0 X%-=l

100 WHEN ASC"X":IF X%<wide% X%+=1
110 WHEN ASC"/":IF Y%>0 Y%-=l
120 WHEN ASC""':IF Y%<hiqh% Y%+=1
130 WHEN ASC"C" :PROCcollect
140 WHEN ASC"F":PROCfiqht
150 OTHERWISE action%=0
160 ENDCASE
170 UNTIL FALSE
180 END
190
200 DEF PROCinitialise
210 MODE 12
220 OFF
230 PRINT TAB(31,5) "Demo RPG Game"
240 X%=4:Y%=4
250 xloc%=0:yloc%=l:type%=2
260 collect%=FALSE
270 fiqht%=FALSE
280 RESTORE+O
290 READ wide%,hiqh%
300 DIM place$(wide%,hiqh%)
310 FOR J%=0 TO wide%
320 FOR I%=0 TO high%
330 READ place$(I%,J~)
340 IF place$(I%,J%)="" place$(I%,J%)="You are deep in the fores

t. Tall pines block your view."
350 NEXT
360 NEXT
370 READ numobs%

Role Play

380 DIM object%(numobs%,2),object$(I%)
390 FOR !%=0 TO numobs%
400 READ object%(I%,xloc%),object%(I%,yloc%),object%(I%,type%),obj

ect$ (!%)

410 NEXT
420 ENDPROC
430 DATA 7,7
440 DATA Loc.0/0,,,,,You are by a swift river, You are on open heath,

This is the wide road to Hanri
450 DATA ,,,,,,You are near a babbling brook,You are on an old grave

1 road
460 DATA ,,,,,,You are by a crystal stream,You find you are on a nar

row track
470 DATA
480 DATA Loc . 0/4,,,,,,,LOC . 8/4
490 DATA
500 DATA
510 DATA Loc.8/0,,,,LOC.8/4,,,Loc.8/8
520
530 DATA 2
540 DATA 4,4,0,A stone seat
550 DATA 3,4,1,A silver chalice
560 DATA 2,4,2,An ugly Troll
570
580 DEF PROCdescribe
590 collect%=FALSE
600 f ight%=FALSE
610 PRINT'" place$ (X%, Y%)
620 FOR !%=0 TO numobs%
630 IF object%(I%,xloc%)=X% AND object%(I%,yloc%)=Y% THEN
640 PRINT object$(!%) " is here"
650 CASE object%(I%,type%) OF
660 WHEN l:collect%=TRUE
670 WHEN 2:fight%=TRUE
680 ENDCASE
690 END IF
700 NEXT
710 PRINT' "Options: ""SPC 5 "Z - West"' SPC 5 "X - East'" SPC 5 '" -

North"'SPC 5 "/ - South"
720 IF collect% PRINT SPC 5 "C - Collect"
730 IF fight% PRINT SPC 5 "F - Fight"
740 PRINT'" Escape - Stop"""Your choice : "
750 ENDPROC
760
770 DEF PROCcollect
780 action%=0
790 IF NOT collect% ENDPROC
800 FOR !%=0 TO numobs%
810 IF object%(I%,xloc%)=X% AND object%(I%,yloc%)=Y% AND object%(!

%,type%)=1 THEN
820 object%(I%,xloc%)=-l
830 PRINT object$(!%) " - carried"

181

182

840 ENDIF
850 NEXT
860 collect%=FALSE
870 ENDPROC
880 :
890 DEF PROCfight
900 action%=0
910 IF NOT fight% ENDPROC
920 FOR I%=0 TO numobs%

Archimedes Game Maker's Manual

930 IF object%(I%,xloc%)=X% AND object%(I%,yloc%)=Y% AND object%(I
%,type%)=2 THEN

940 object%(I% ,xloc%)=-2
950 PRINT object$(I%) " - killed"
960 ENDIF
970 NEXT
980 fight%=FALSE
990 ENDPROC

Although there is primitive fight recognition, full combat sequences are a
·bit more complicated as you have to give a real air of urgency, and at the
same time enable the player to respond quickly to the changing situation. It
may well pay to expand the object types into parallel arrays of friends,
foes, treasures, and utility objects.

Each player takes control of a character in the game, each typically with
the following attributes:

Strength combat
Psi magical ability
Intelligence general capability
Experience learned abilities

A player's ability to win any combat depends on matching these attributes
against those of the adversary, and then assessing which actions are
attempted and the response time.

Combat is usually broken down to melee rounds, and the player attributes
updated after each round. As well as giving players strike by strike control,
this allows you to generate multi-character combat. Only one-to-one fights
take place in each round, but by alternating the characters you can give
the appearance of a real gang fight.

A simple way of achieving this is to set up a pair of arrays containing
character attributes. One array is for goodies and the other for baddies. At
random you can then match any goodie against any baddie. If any
character dies, its position in the array is taken by another and the array
compacted. The combat session finishes when one or other array contains
no more characters. There is an outline of this technique in Listing 8.2.

Role Play

Listing 8.2: Combat

10 REM > Combat
20
30 PROCinitialise
40 PROCplayer
50 PROCfight
60 PROCendgame
70 END
80
90 DEF PROCinitialise

100 MODE 12
110 OFF
120 RESTORE+35
130 READ weapons%
140 DIM weapon$(weapons%)
150 FOR I%=1 TO weapons%
160 READ weapon$(I%)
170 NEXT
180 sword%=1
190 spell%=2
200 feint%=3
210 READ attribnum%
220 line$=" Character

nee"
230 strenqth%=1
240 psi%=2
250 intelligence%=3
260 experience%=4
270 READ goodies%,baddies%

Strength Psi Intelligence Experie

280 IF goodies%>baddies% size%=goodies% ELSE size%=baddies%
290 DIM attributes%(1,size%,attribnum%) :REM goodies/baddies, charact

ers,size%
300 DIM gang%(1)
310 DIM name$(1,size%)
320 FOR I%=1 TO goodies%
330 READ name$(0,I%)
340 FOR J%=1 TO attribnum%:REM zero element used as player flag
350 READ attributes%(0,I%,J%)
360 NEXT
370 NEXT
380 FOR I%=1 TO baddies%
390 READ name$ (1, I%)
400 FOR J%=1 TO attribnum%
410 READ attributes%(1,I%,J%)
420 NEXT
430 NEXT
440 PRINT" "Test Combat sequence"'
450 VDU 28,0,31,79,VPOS
460 ENDPROC
470 DATA 3

183

184

480 DATA Sword,Spell,Feint
490 DATA 4
500 DATA 3,3
510 DATA Dwarf,50,10,9,1
520 DATA Elf,10,50,15,1
530 DATA Wizard,5,60,20,1
540 DATA Troll,50,5,5,1
550 DATA Minataur,20,30,15,1
560 DATA Pixie,5,60,15,1
570
580 DEF PROCplayer

Archimedes Game Maker's Manual

590 PRINT "Select your character by number"
600 qanq%(0)=qoodies%
610 qanq%(1)=baddies%
620 PROClist (0)
630 REPEAT
640 num%=GET-48
650 UNTIL num%>0 AND num%<=qoodies%
660 CLS
670 attributes%(0,num%,O)=TRUE:REM set player flaq
680 REM could be repeated for several players & with baddies too
690 ENDPROC
700
710 DEF PROClist(flaq%)
720 LOCAL I%,J%
730 PRINT' line$
740 FOR I%=1 TO qanq%(flaq%)
750 PRINT';I% TAB(2) name$(flaq%,I%);
760 FOR J%=1 TO attribnum%
770 PRINT TAB(J%*11) attributes%(flaq%,I%,J%);
780 NEXT
790 NEXT
800 ENDPROC
810
820 DEF PROCf iqht
830 LOCAL attack%,defend%
840 qanq%(0)=qoodies%:REM temp store for fiqht only
850 qanq%(1)=baddies%
860 REPEAT
870 CLS
880 PRINT"'Goodies"
890 PROClist(O)
900 PRINT""'Baddies"
910 PROClist(l)
920 PRINT'
930 attack%=RND(2)-l
940 defend%=1-attack%
950 assail%=RND(qanq%(attack%))
960 IF assail%=0 assail%=1
970 IF attributes%(attack%,assail%,O) PROCselect ELSE PROCmatch
980 PROCstrike
990 UNTIL qanq%(attack%)=0 OR qanq%(defend%)=0

Role Play

1000 ENDPROC
1010
1020 DEF PROCselect
1030 PRINT name$(attack%,assail%) ", select your opponent by number"'
1040 REPEAT
1050 oppose%=GET-48
1060 UNTIL oppose%>0 AND oppose%<=qanq%(defend%)
1070 PRINT"' Select your weapon by number"'
1080 FOR I%=1 TO weapons%
1090 PRINT"(";I%") "weapon$(I%)
1100 NEXT
1110 REPEAT
1120 type%=GET-48
1130 UNTIL type%>0 AND type%<=weapons%
1140 ENDPROC
1150
1160 DEF PROCmatch
1170 oppose%=RND(qanq%(defend%))
1180 IF oppose%=0 oppose%=1
1190 IF attributes%(attack%,assail%,strenqth%)>attributes%(defend%,op

pose%,strenqth%) type%=1 ELSE IF attributes%(attack%,assail%,psi%)>att
ributes%(defend%,oppose%,psi%) type%=2 ELSE type%=3

1200 ENDPROC
1210 :
1220 DEF PROCstrike
1230 PRINT "The " name$(attack%,aHail%) " attacks th• " name$(defend

%,oppose%) " ";
1240 CASE type% OF
1250 WHEN sword%:PROCsword
1260 WHEN spell%:PROCspell
1270 WHEN feint%:PROCfeint
1280 ENDCASE
1290 IF INKEY 150
1300 ENDPROC
1310
1320 DEF PROCsword
1330 LOCAL diff%,sum%
1340 diff%=attributes%(attack%,assail%,intelliqence%)*attributes%(att

ack%,assail%,experience%)-attributes%(defend%,oppose%,intelliqence%)*a
ttributes%(defend%,oppose%,experience%)

1350 IF diff%>90 diff%=90
1360 sum%=(attributes%(attack%,assail%,strenqth%)+attributes%(defend%

,oppose%,strenqth%))DIV 4+1
1370 PRINT "with a blade of true steel."
1380 IF RND(9)=1 THEN
1390

ape. 11

1400
1410
1420

PRINT "Fumbled! The " name$(defend%,oppose%) " has a lucky esc

ELSE
IF RND(diff%)>30 THEN

PRINT "The "name$(defend%,oppose%) " is too clever to be ca
uqht so easily."

1430 ELSE

185

186 Archimedes Game Maker's Manual

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

PRINT "A hit. ";
attributes%(defend%,oppose%,strenqth%)-=sum%
IF attributes%(defend%,oppose%,strenqth%)<1 THEN

PROCdead(defend%,oppose%)
attributes%(attack%,assail%,strenqth%)+=(sum% DIV 2)
attributes%(attack%,assail%,experience%)+=1
ELSE
PRINT "The" name$(defend%,oppose%) "is still strong."
attributes%(attack%,assail%,strenqth%)-=(sum% DIV 2)

IF attributes%(attack%,assail%,strength%)<1 PROCdead(attac
k%,assail%)

1540 ENDIF
1550 ENDIF
1560 ENDIF
1570 ENDPROC
1580
1590 DEF PROCspell
1600 LOCAL diff%
1610 diff%=attributes%(attack%,assail%,intelligence%)-attributes%(def

end%, oppose%, intelligence%)
1620 IF diff%>20 diff%=20
1630 PRINT "with a strange enchantment."
1640 IF RND(9)=1 THEN
1650
1660
1670

PRINT "The " name$ (defend%, oppose%) " ducks the spell."
attributes%(defend%,oppose%,experience%)+=1
ELSE

1680 IF attributes%(attack%,assail%,psi%)>attributes%(defend%,oppos
e%,psi%) AND diff%>3 THEN

1690 PRINT "The " name$(defend%,oppose%) " is ensnared by the spell."
1700 attributes%(attack%,assail%,psi%)+=1
1710 attributes%(attack%,assail%,experience%)+=1
1720 attributes%(defend%,oppose%,strenqth%)-=(attributes%(defend%

,oppose%,strenqth%) DIV 3)
1730 IF attributes%(defend%,oppose%,strenqth%)<1 PROCdead(defend%

,oppose%)
1740 ELSE
1750 PRINT "The " name$(attack%,assail%) " hasn't the mental powe

r to overcome the "name$(defend%,oppose%)
1760 attributes%(defend%,oppose%,experience%)+=1
1770 ENDIF
1780 ENDIF
1790 ENDPROC
1800
1810 DEF PROCfeint
1820 PRINT "by a cunning feint."

1830 IFattributes%(attack%,assail%,intelligence%)>attributes%(defend
%,oppose%,intelligence%) THEN

1840 IF attributes%(attack%,assail%,experience%)>attributes%(defend
%,oppose%,experience%) DIV 2 THEN

1850 PRINT "It fools the " name$(defend%,oppose%) ", but saps strength."
1860 attributes%(attack%,assail%,str

ength%)-=2

Role Play

1870 ENDIF
1880 ELSE
1890 PRINT "The " name$(defend%,oppose%) " laughs and continues the fight."
1900 attributes%(defend%,assai1%,experience%)+=1
1910 ENDIF
1920 ENDPROC
1930
1940 DEF PROCdead(flag%,character%)
1950 PRINT "The " na.me$(flag%,character%) " dies."
1960 IF character%<gang%(flag%) PROCmovedown
1970 gang%(flag%)-=l
1980 ENDPROC
1990
2000 DEF PROCmovedown
2010 LOCAL I%,J%
2020 FOR I%=character% TO gang%(flag%)-l
2030 na.me$(flag%,I%)=na.me$(flag%,I%+1)
2040 FOR J%=0 TO attribnum%
2050 attributes%(flag%,I%,J%)=attributes%(flag%,I%+1,J%)
2060 NEXT
2070 NEXT
2080 ENDPROC
2090
2100 DEF PROCendga.me
2110 LOCAL flag%
2120 CLS
2130 IF gang%(0)>0 THEN
2140 FOR I%=1 TO gang%(0)
2150 IF attributes%(0,I%,O) flag%=TRUE
2160 NEXT
2170 IF NOT flag% PRINT "Unfortunately your character died but t";

ELSE PRINT "T";
2180 PRINT "he good guys won the fight."
2190 ELSE
2200 IF gang%(1)>0 THEN
2210 PRINT "The baddies rule OK!"
2220 ELSE
2230 PRINT "Everyone died. There are no victors."
2240 ENDIF
2250 ENDIF
2260 VDU 26
2270 PRINT TAB(0,5)
2280 ON
2290 ENDPROC

187

A problem that can often arise, is where a character, apparently dying,
suddenly unleashes a spell of enormous power that completely destroys
the enemy, and yet still hasn't the strength to pick up a sword. To
overcome this you should make character death occur on the basis of

188 Archimedes Game Maker's Manual

several attributes falling below a certain point, rather than any single one
dropping to zero. To add further realism, instead of working directly with
the stored figures for attributes, work from a continuously updated set of
inter-related ones.

If you decide to write an RPG, you must take the trouble to ensure that any
magic or pseudo-science you devise is consistent. There is nothing more
irritating than finding that, say, a firemaking spell produces a roaring
inferno when you have a few wet twigs but not so much as a sniff of
smoke from a bundle of old newspapers.

Combining the RPG map routine with the combat program will give you a
basic text only RPG. This is obviously too crude for today's players, but
there is enough there to give you an idea as to how you can develop your
own ideas into a fully fledged graphical game.

8.2 Adventures
Adventure games are often thought of as RPGs with the combat section
removed, although that is a rather simplistic view. In the first place,
adventures tend to be more focussed, in that there is a specific set of tasks
to be performed, usually in a fixed order. Similarly there is usually a fixed
number of objects, monsters and the like.

8.2.1 Rooms

The map structure is not so rigidly defined, but moving to different
locations in the game world should be reasonably logical. Going East from
a room that you travelled West to reach should take you back to your
original location. The exception is in mazes, where experienced players will
expect peculiar directions. Unlike RPGs, adventures don't usually have all
possible locations set out in a grid. It's normally much more of a
free-flowing map.

Because of this, the usual representation of the game map, is not a simple
two dimensional array, but an array of pointers and links. The player's
current location is simply a location number, this being an index to the
main location array. This is often referred to as a room list. Typically there
will be four different other rooms that can be reached from any one room.
Testing an attempt to move North say, would involve looking at the first
direction link, assuming that this is to represent North, and seeing which
room number it points to. Zero would mean that this direction is closed off.
This map representation is shown in Figure 8.1.

Role Play 189

1 W3
3

W4 4 W I!
----- ---------------- -------- 6

El E3 One way link E4

S 2 SE2 SS SS

N 1 N4 N6

2
NW3 s W7 W8 7 8

ES E7

Figure 8. 1: Adventure game room map

Notice how the room numbers don't need to follow any special pattern .
This is particularly useful when you want to open or close links as the
game progresses. Notice the one way link between rooms 6 and 4. This is
a very common way of dealing with cliff tops, pits and the like, where the
player can get in, but not back out again. Keeping the West option
reserved in room 4 allows you to create a magic door back later in the
game.

The room list will also have flags for any special characteristics that each
room may have. Caves would need light for example. Below is a typical
room list structure. This can conveniently be held in parallel arrays, with
the text information a string array. The array index numbers would be the
actual room numbers.

Direction link 1
Direction link 2

Room attribute 1
Room attribute 2

Sprite pointer(s)
Description text pointer(s) .

8.2.2 Locating objects

Once you have your map sorted out, you need to consider how objects are
to be placed. This is most easily done in a similar manner to that of RPGs.
However, instead of storing X,Y coordinates you simply have an array of
objects storing room numbers'. The array index number itself is a unique
identifier, so you don't need a type element in the array. However, you can

190 Archimedes Game Maker's Manual

usefully keep a set of flags determining the generic attributes of the object:
combustible, breakable or wearable. Your object structure would be very
similar to the place structure, as follows:

Location
Object attribute 1
Object attribute 2

Sprite pointer(s)
Description text pointer(s).

All you need to do now for descriptions, or for any other object handling, is
scan the list, picking out any object marked as at the room in question. It is
usual to mark room 0 as hidden objects, room -1 as carried, and room -2
as worn.

One possible source of confusion arises when an object can be carried by
another object. Does location 5 refer to room 5 or object 5? The solution is
very simple. All you do is add an offset of say, & 1000 to the object
numbers. You are never likely to want 4,096 rooms and it can easily be
masked in and out of calculations and array indices as follows:

index%=object% AND &FFF
object%=index% OR &1000

8.2.3 Understanding instructions

The core of a text adventure game is the parser. This is the part of the
program that reads in a player's input and works out exactly what is being
requested. All words read from the text are given number representation. If
no known words are found then the word identifiers are set to zero. Older
adventures used to recognise simple verb/noun combinations such as Get
Brick or Drop Fish. Later versions scanned the text for just these two
combinations but were able to skip over and discard as rubbish, any
unwanted words. This didn't improve the flexibility of the parser but it did
allow more natural sentences to be decoded.

A useful addition to this simple parser is the handling of prepositions.
These are words that indicate how a noun is used or where it may be
found such as:

Put hat on peg
Sweep floor with broom
Look under rug
Hide key in pocket.

Role Play 191

Two other useful additions are adjectives and adverbs. Adjectives would be
noun modifiers giving results like:

Get the green bottle
Find a rough spot
Examine the open box.

Adverbs, as their name suggests are verb modifiers. Using all of these word
types will give remarkably intelligent decoding results. All the following can be
recognised by such a parser:

Quietly enter the open door
Carefully drop a silver coin into the metal bucket
Eat the big cake quickly.

It is doubtful whether there is much to be gained by taking your parser much
further, even though it might be an interesting challenge to produce really
sophisticated parser, of the kind that can handle a sentence like:

Use the string to tie all the keys except the red one to the tag and hang
them up.

Most game players will quickly revert to quick-fire three or four word
commands, with only the occasional attempt at something more exotic when
all else fails. Therefore effort spent in developing your parser would, sadly, be
wasted.

A somewhat ticklish area is that of handling obscenities. Most adventurers get
frustrated sometimes, and then use words that no decent computer wants to
read. If you decide to recognise such words, you must take great care to
ensure that it is completely impossible for your game player to accidentally
reveal them, otherwise you could cause very real offence to an innocent
player. You are best off recognising the offending words as verbs and then
giving simple responses like:

I don't like that kind of language
You can't do that sort of thing in this game
This is a family game.

You can keep an obscenity count if you like, and after a couple of warnings
terminate the player with an act of the supreme being's displeasure.

A working verb, noun, adverb, adjective parser is shown in Listing 8.3

Listing 8.3: A working parser

10 REM > Parser
20 :

192

30 PROCinitialise
40 REPEAT
50 REPEAT
60 cormnand$=FNinput
70 UNTIL cormnand$>""
80 PROCparse(cormnand$)

Archimedes Game Maker's Manual

90 PRINT "Verb=";ver%,"Nounl=";no1%,"Noun2=";no2%,"Prep.=";pre%,"
Adj.l=";adl%,"Adj.2=";ad2%,"Adverb=";adv%'

100 UNTIL cormnand$="*"
110 VDU 26
120 PRINT TAB(0,30)
130 END
140
150 DEF PROCinitialise
160 MODE 12
170 READ numverbs%
180 DIM verb$(numverbs%),verb%(numverbs%)
190 PRINT "Verbs"
200 FOR I%=0 TO numverbs%
210 READ verb$(I%),verb%(I%)
220 PRINT TAB(I%*10) verb$(I%);
230 NEXT
240 READ numnouns%
250 DIM noun$(numnouns%),noun%(numnouns%)
260 PRINT''"Nouns"
270 FOR I%=0 TO numnouns%
280 READ noun$(I%),noun%(I%)
290 PRINT TAB(I%*10) noun$(I%);
300 NEXT
310 READ numpreps%
320 DIM prep$(numpreps%),prep%(numpreps%)
330 PRINT''"Prepositions"
340 FOR I%=0 TO numpreps%
350 READ prep$(I%),prep%(I%)
360 PRINT TAB(I%*10) prep$(I%);
370 NEXT
380 READ numadjes%
390 DIM adje$(numadjes%),adje%(numadjes%)
400 PRINT''"Adjectives"
410 FOR I%=0 TO numadjes%
420 READ adje$(I%),adje%(I%)
430 PRINT TAB(I%*10) adje$(I%);
440 NEXT
450 READ numadves%
460 DIM adve$(numadves%),adve%(numadves%)
470 PRINT''"Adverbs"
480 FOR I%=0 TO numadves%
490 READ adve$(I%),adve%(I%)
500 PRINT TAB(I%*10) adve$(I%);
510 NEXT
520 PRINT''"Enter sentence to parse (capitals only), or* to stop."
530 VDU 28,0,31,79,VPOS+l

Role Play

540 ENDPROC
550 DATA 7:REM verbs
560 DATA GO,l,GET,2,CARRY,2,DROP,3,KILL,4,HIT,5,EXAMINE,6,FIND,7
570 DATA 6:REM nouns
580 DATA KEY,l,DOG,2,GLASS,3,BEAKER,3,BOX,4,STONE,5,ROCK,5
590 DATA ll:REM prepositions
600 DATA INSIDE,l,IN,l,OUTSIDE,2,UNDER,3,0VER,4,0N,5,0NT0,5,BESIDE,6

,BY,6,AGAINST,6,WITH,7,USING,7
610 DATA 7:REM adjectives
620 DATA RED,l,BLUE,2,GREEN,3,YELLOW,4,BIG,5,LITTLE,6,ROUGH,7,SMOOT

H,B
630 DATA 4:REM adverbs
640 DATA QUICKLY,l,SLOWLY,2,QUIETLY,3,GENTLY,4,HEAVILY,5
650
660 DEF FNinput
670 LOCAL c$
680 INPUT c$
690 IF NOT FNmore THEN
700 WHILE RIGHT$(c$,l)=" "
710 c$=LEFT$(c$,LEN c$-l)
720 ENDWHILE
730 ENDIF
740 =c$
750
760 DEF PROCparse(c$)
770 ver%=0:nol%=0:no2%=0:pre%=0:adl%=0:ad2%=0:adv%=0
780 REPEAT
790 flag%=FNmore
BOO PROCword(verb$(),verb%(),ver%,numverbs%)
810 PROCword(noun$(),noun%(),nol%,numnouns%)
820 PROCword(noun$(),noun%(),no2%,numnouns%)
830 PROCword(prep$(),prep%(),pre%,numpreps%)
840 IF nol%=0 PROCword(adje$(),adje%(),adl%,numadjes%) ELSE PROCwo

rd(adje$(),adje%(),ad2%,numadjes%)
850 PROCword(adve$(),adve%(),adv%,numadves%)
860 IF flag%=FALSE PROCdiscard
870 UNTIL c$=""
880 ENDPROC
890
900 DEF FNmore
910 WHILE LEFT$(c$,l)=" "
920 c$=RIGHT$(c$,LEN c$-l)
930 ENDWHILE
940 =c$=""
950
960 DEF PROCword(t$(),t%(),RETURN w%,n%)
970 LOCAL a%,w$
980 IF w%>0 OR flag% ENDPROC
990 a%=INSTR(c$," ")

1000 IF a%=0 THEN
1010 w$=c$
1020 ELSE

193

194 Archimedes Game Maker's Manual

1030 w$=LEFT$(c$,a%-l)
1040 ENDIF
1050 I%=-l
1060 REPEAT
1070 I%+=1
1080 UNTIL I%>=n% OR t$(I%)=w$
1090 IF t$(I%)=w$ THEN
1100 w%=t% (I%)
1110 IF a%=0 c$="" ELSE c$=MID$(c$,a%+1)
1120 flaq%=TRUE
1130 ENDIF
1140 ENDPROC
1150 :
1160 DEF PROCdiscard
1170 LOCAL a%,w$
1180 a%=INSTR(c$," ")
1190 IF a%=0 THEN
1200 c$=""
1210 ELSE
1220 c$=MID$(c$,a%+1)
1230 ENDIF
1240 ENDPROC

To extend the vocabulary all you need to do is alter the data lines,
increasing the word counter, and fit in the words. You will see that several
words can have the same reference number which is essential to allow for
players using variants of the same command.

Notice how, as it strips out words from the input text, the parser re-checks
for word types it may have missed. This is to cope with the vagaries of
English grammar that allow adverbs, in particular, to be put almost
anywhere. Both of the following will be correctly read by the example
parser:

Softly stroke the cat
Stroke the cat softly.

Any words that can't be matched at all are dumped by the discard
procedure. This lets your player use all the common redundant conjunc­
tions, giving the feel of real understanding from your game.

8.2.4 Finding nouns

While in a graphic adventure, you can isolate objects, and hence their
nouns simply and unambiguously with a simple mouse click. With a text
3.dventure things are much more difficult. There are two basic approaches
:o resolving this problem. The first and commonest, is to simply keep a list
)f words, as was done in the example parser. However, as with verbs you

Role Play 195

need to allow for the player using a similar but not identical word. Take the
sentence:

You are on a rocky hill path. Sharp flinty stones are all around.

If you have a stone as an object, your player could quite easily describe it
as a rock or a flint, and be most annoyed if the game refuses to
understand. This means that you need to look at your text very carefully
and make sure that you have covered all reasonable possibilities with
duplicate noun names. Once you have a match , you need to make sure
that the object referred to is actually there, or has been seen by the player.
To simply say: You don 't have it yet is a dead giveaway that the object
actually exists somewhere in the game.

An alternative method of finding nouns, is to use the description text itself.
You scan all the text for the current room, and all objects in that room, a
word at a time . By doing this you can guarantee that the object or place
exists, and also that the player can see it. All you need to do is keep a
pointer to the text you are scanning at the time the match is made. This is
slightly slower than the other method but far more reliable .

8.2.5 Puzzles

Having described and identified everything in the game you now need to
do something with that information. Adventure generator programs use
quite a complex pseudo language for building up sets of responses to
player input. These puzzle systems can consist of many hundreds of lines
that are tested until an exact match is found with the action attempted by
the player. However, in a home grown game you can get equally good
results by using a simple tree structure.

The first priority is to isolate your verbs. This is readily done with a case
statement:

CASE verb% OF
WHEN l:PROCcarry
WHEN 2:PROCdrop
WHEN 3:PROCthrow
OTHERWISE:PROCimpossible

ENDCASE

Taking the carry situation you can remove some of the tedious checks as
below.

CASE TRUE OF
WHEN carried%>maxc%:PROCtoomany
WHEN weight%>maxw%:PROCtooheavy

196 Archimedes Game Maker's Manual

WHEN size%>maxs%:PROCtoobiq
WHEN objectloc%<l:PROCalreadycarried
WHEN objectloc%<&1000:PROCcarryroom
OTHERWISE:PROCcarryobject

ENDCASE

Notice that there may be some valid situations where you appear to carry a
room, but are really handling a hidden object, hence the extra procedure.

Finally, in the Carryobject procedure you can have the individual lines
testing specific object characteristics and room locations. Anything not
handled specifically, would be passed on to a general pickup routine at the
end of the procedure.

8.3 Combat
There is a small group of games that rely on combat only. They still fit in
with the general classification of role play however, but have no storyline or
special attributes. These are based on martial arts and only really became
attractive once there were machines with the ability to run high resolution
animated graphics. They are usually single or two player games. The
player is given a number of kicks, punches, jumps and rolls, and the

. character on the screen will perform these in response to a keypress or
mouse click.

The graphical part is really very easy to implement. You simply build up a
set of film animations for all the actions you require. These will all take
place within a fixed character area. You have an identical set of actions,
but with a different sprite set, for the opponent, whether it be another
player or computer driven.

If you use a variant of coordinate collision testing you can produce a
realistic hit system. You relate the damage to your opponent to the
distance from the attacking player. Where the two sprites concerned are
obviously not in contact at all, the strike just wastes the attacker's energy.
As they begin to overlap during the action, you produce a graded energy
loss to the character under attack. Hence the reason for keeping the
animation within a fixed area.

Usually you only need to keep a single energy variable for each
combatant, incrementing it with time and successful encounters, decreas­
ing it with failed encounters or unnecessary action. When the energy falls
below a certain level, the character dies. You can give greater realism to
this by only allowing the character to perform the more energetic actions,
like high kicks, if its energy level is above a certain figure.

Role Play 197

Because these games tend to be particularly fast and furious, it is probably
best to organise the function keys so that each is assigned a single action.
This can be duplicated with a row of matching mouse sensitive icons. This
not only allows your player to decide which is more important - speed or
keyboard life - but is a useful on screen reminder.

8.4 Simulators
I suppose that simulators can only be thought of as role play in the very
broadest sense but nevertheless they still fit the overall classification. The
games that most quickly spring to mind when simulations are mentioned
are aircraft flight simulators. However, almost any day-to-day activity can
provide a basis for simulation. Many education centres use simulated
shopping to help teach small children how to handle their money wisely.
The logical extension to this is, of course, a trading simulation, where the
player runs a large corporate business or even an entire country's
economy.

8.4.1 Real world situation

With these real world simulations you need to make a distinction between
real time and game time. Logically, if you maintain a ratio of 1 transaction :
1 move, then one year of trading will take you a year to play out on the
game. Hardly practical! For many of these games you can use a ratio as
coarse as 1 year : 1 move. On the other hand, if you are simulating the
running of a power station or chemical works, you would probably work at
nearer 1 hour : 1 move.

Unless you are developing a simulation for purely education use, you will
need to fine tune the time scale to give a game that is slow enough to be
playable without becoming boring. Also, with real world simulators you
either need to know a fair bit about statistical analysis, or you will have to
develop an idea a bit at a time, and make empirical adjustments to keep
the simulation in balance.

As an example I'll outline a simulation for Bodgit, computer manufacturers.
Mr Bodgit only makes cheap machines, with no monitor, disk drives, or
other accessories. At its basic level, the simulation needs to handle three
areas:

1
2
3

Purchase of components
Manufacture of computers
Sale of computers.

198 Archimedes Game Maker's Manual

These can be expanded as follows:

1.1 Cost of components
1.2 Delivery charges
1 .3 Working capital
1.4 Factory storage space
2.1 Labour costs
2.2 Throughput
2.3 Rejects
2.4 Warehouse facilities
3.1 Asking price
3.2 Dealer network/delivery costs
3.3 Market saturation.

We should also, at this point, consider general aspects that will affect all
areas of production:

4.1 Services (gas, electricity)
4.2 Rent/rates
4.3 Breakages
4.4 Crime.

You could now produce a fair simulation with just this information. We'll
look at section one in some detail, so you can see how the ideas develop.

The factory storage space will limit how many items you can hold in stock.
This, along with your working capital will limit your purchasing. At the same
time, a reasonable simulation should allow for lower price breaks on bulk
orders, and lower delivery charges, even free delivery over a certain order
size. All of this can be done with quite simple mathematics.

Scaling and balance

It pays to put everything in terms of anonymous units, rather than real
figures. It's the ratios that are important, not the actual figures. These can
be scaled later to give meaningful results to the game player as well as a
balanced simulation. In our example, we can assume, for example, that
our main stores has a storage volume of 500 units, and storage units
required for the parts needed for one computer are as follows.

Units Item
1 Plain PCB
3 PCB components
2 Keyboard
6 Computer case.

Role Play 199

This gives a total requirement of 12 units, and our factory can store the
materials for almost 42 computers. However, you also need storage for
completed machines. These would logically require slightly more storage
space than the empty cases, say seven units. So your player will have to
balance the two.

The component cost can be looked at in exactly the same way. You can
start with a working capital of 400 units, and cost the parts so:

Units Item
2 Plain PCB
20 PCB components
5 Keyboard
1 Computer case.

Again, not all the working capital can be used, as you also have to pay
wages and other costs. However you should allow your players to make
this mistake. Let them find out the hard way exactly what happens when
their workers don't get paid!

Component costs, wages and final unit price all have to be kept in proportion.
You can usually assume that component costs only come to about a tenth of
the asking price of the completed computer. As a rough guide, an average
week's wages should be set at about half the asking price of one machine. But
this is all information that you can readily find out by asking the right questions.

You will find all sorts of balances work out quite naturally as you develop your
game. If, for example, your player allows too little storage for completed
machines, the labour force will have to stop work until some computers have
been sold off, but will still demand the same wages. All you will need to do is
tweak the figures so that you don't get runaway situations.

External influences

The situation is slightly more complicated regarding things like market
saturation. Here you have to relate the actual number of computers sold to
the apparent reluctance for people to buy. For simplicity, we'll consider that
all factors, like inflation, recession, and total competitive computer
manufacturing are lumped together as a single negative factor.

A separate factor is the total number of computers you've already sold. As
people buy your machine, they won't be likely to want another, unless it
fails. Eventually your selling capability could stagnate completely.

Putting it simply you have the very approximate formula:

200 Archimedes Game Maker's Manual

computers sold = computers available/{machines sold/time)*asking
price*saturation

Time and saturation are pseudo constants you should fiddle to get a
reasonable balance. Time partially represents the ageing of Bodgit's cheap
computers. With both this and asking price, I've simplified the situation. A
very long ageing time will give poorer sales, but in reality too short a time
would have the customers grumbling. Similarly, too low an asking price
would look rather suspicious. Also, you obviously can't sell 0.132 of a
computer, so you take only the integer value.

8.4.2 Community simulations

Of increasing popularity now, is a whole community simulation. Such a
simulation has enormous scope for the programmer and player alike.
Below is a relatively brief list of the sort of factors you can integrate into
such a simulation. The secondary factors listed are just a taste of the sort
of relationships you will need to follow up. In fact, almost everything will
inter-relate, so the feel of your simulation for your players, will be a direct
reflection on how thoroughly you understand your community.

Population
Housing
Employment
Crime
Services
Disasters

Birth rate, death rate
Building, civil engineering
Manufactured goods, agriculture, housing
Laws, poverty, population
Politics, infrastructure
Man made, natural.

Obviously these whole communities are highly complex living organisms in
their own right, and at best, yours will be only a very limited simulation. A
key point to remember when planning such a game is that trends are
usually more significant than isolated incidents. If you can, you should
pursue the following lines of enquiry for more information about how
groups of people behave:

History
Politics
Local government
Sociology
Market research;
Statistics.

Role Play 201

8.4.3 Graphical simulations

Unfortunately, many graphical simulations require a considerable amount
of drawing, rather than sprite plotting, and in general drawing will be much
slower than sprite plotting. This is particularly relevant with flight
simulators, where you are drawing in real time, as the plane flies its
course. However it is often possible to work out a compromise. If you look
at Figure 8.2, an admittedly crude drawing, you will see that only the
central shaded area has to be drawn, using the three dimensional
techniques described earlier.

I co:o::u:u:t Q

Figure 8.2: Cockpit drawn areas

All the rest of the aircraft cockpit can be handled by sprite plotting. For
example, there is a limit to the practical resolution of the altimeter and
heading dials. Rather than try to draw these, it is therefore simpler to have
a sprite film of their readings, and simply select the one nearest to the
actual figures. Although rather memory hungry, this technique can be used
for numeric as well as metered displays, to considerably speed up
response time.

Initially you would define a graphic viewport where the dotted rectangle is
and perform your drawing in this area. Then you mask out the unwanted

202 Archimedes Game Maker's Manual

parts with sprites of the dashboard, window framing and overhead area.
These sprites would also contain all the fine detail of switches, dials and
lights that are not in fact active. Finally you can plot in the small dynamic
detail.

8.4.4 Terrain mapping

All the discussion so far has assumed flat earth type scenarios. With many
simulations this is far from reality. The game where this is of greatest
significance is probably golf. There are two main variables with impact of
the ball with the ground. The first is the obvious relative height, above or
below the starting point, and the other is the texture of the surface the ball
hits. ·

Height is relatively easy to deal with. You only need to maintain a two
dimensional array of spot · heights. The elements of the array would
represent the height above an arbitrary reference point, spaced say, 100
metres apart. For simplicity, you then calculate the actual height based on
the distance of the ball from the nearest four surrounding points, and their
actual height figures.

Listing 8.4 shows this idea in practice with a graphical display of a small
map read from data. The algorithm used is accurate enough for our
purposes. As it is quite easy to calculate the average height of a square
area, a recursive procedure is used create progressively smaller squares
round the actual point we wish to calculate, until the X,Y differences, and
therefore the height differences, are small enough to be insignificant. You
will see that by making extensive use of barrel shifting, and scaling our
dimensions up, the routine is almost entirely integer driven, with no
complex calculations at all. This makes it very fast.

Listing 8.4: Terrain mapping

10 REM > Terrain
20 :
30 ON ERROR PROCerror:END
40 PROCinitialise
50 :
60 REPEAT
70 INPUT "Start X (1151 max):" xpos
80 INPUT "Start Y (511 max):" ypos
90 INPUT "End X (1151 max):" xend%

100 INPUT "End Y (511 max):" yend%
110 CLG
120 xstep=(xend%-xpos)/width%
130 ystep=(yend%-ypos)/width%

Role Play

140 FOR I%=0 TO width%
150 pX%=xpos
160 pY%=ypos
170 xpos+=xstep
180 ypos+=ystep
190 PROCset
200 POINT I%<<2,FNhigh(S%)>>3
210 NEXT
220 UNTIL FALSE
230 END
240
250 DEF PROCerror
260 MODE 12
270 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
280 ENDPROC
290
300 DEF PROCinitialise
310 MODE 12
320 COLOUR 0,128,128,128
330 PRINT TAB(30,5) "Terrain Map" TAB(30,7) "Escape to stop"
340 VDU 28,0,9,23,0
350 VDU 24,0;0;1279;511;
360 width%=320
370 size%=128
380 acc%=4
390 RESTORE+lO
400 READ X%,Y%
410 DIM map%(X%,Y%)
420 FOR J%=0 TO Y%
430 FOR I%=0 TO X%
440 READ height%
450 map%(I%,J%)=height%<10
460 NEXT
470 NEXT
480 ENDPROC
490 DATA 9,5
500 DATA 1,2,3,4,5,6,6,5,4,3
510 DATA 2,3,5,5,6,6,7,6,5,3
520 DATA 4,4,6,6,7,8,7,6,4,2
530 DATA 5,5,7,6,6,8,6,5,4,3
540 DATA 3,4,6,5,5,7,6,5,4,3
550 DATA 2,2,5,3,3,4,3,3,3,4
560
570 DEF PROCset
580 X%=pX% DIV size%
590 Y%=pY% DIV size%
600 Ah%=map%(X%,Y%)
610 Bh%=map%(X%+1,Y%)
620 Ch%=map%(X%+1,Y%+1)
630 Dh%=map%(X%,Y%+1)
640 S%=size%
650 pX%=pX% MOD size%

203

204

660 pY%=pY% MOD size%
670 ENDPROC
680 :
690 DEF FNhigh(S%)
700 IF S%<acc% THEN
710 height%=(Ah%+Bh%+Ch%+Dh%)>>3
720 ELSE
730 half%=S%>>1
740
750 IF pX%>half% THEN
760 pX%-=half%
770 Ah%=(Ah%+Bh%)>>1
780 Dh%=(Ch%+Dh%)»1
790 ELSE
BOO Bh%=(Ah%+Bh%)>>1
810 Ch%=(Ch%+Dh%)>>1
820 ENDIF
830
840 IF pY%>half% THEN
850 pY%-=half%
860 Ah%=(Ah%+Dh%)»1
870 Bh%=(Bh%+Ch%)»1
880 ELSE
890 Dh%=(Ah%+Dh%)>>1
900 Ch%=(Bh%+Ch%)>>1
910 ENDIF
920
930 height%=FNhigh(half%)
940 ENDIF
950 =height%

Archimedes Game Maker's Manual

Mapping surface texture is probably best done slightly differently. You can
usually assume that the fairway is of reasonably consistent bounce and roll
performance, with just some minor random deviations. The rough and
bunkers will have virtually zero bounce, and water obstructions will lose the
ball altogether. Therefore you need to plan out a finer set of coordinates for
these obstructions. These are best stored as a list rather than a map, and
the ball's position compared with the nominal centre of such obstructions.
This also lends itself to defining specific, above ground obstructions, such
as trees.

It should be possible to integrate these maps, with the game drawing
routine so that you have consistent views and behaviour, regardless of the
location of the ball.

Role Play 205

8.5 Status Saving and Reloading
Most role play games are designed for many hours of play. Where arcade
style games can just about survive without game saving facilities, it is quite
unreasonable to expect a role-player to start from scratch each time. To
facilitate saving and re-loading you should split your game data into distinct
static and dynamic parts. Static data will be the overall map or plan of the
game, including any text, sprites and the like. Dynamic data is everything
that can possibly be modified by the game as it progresses.

It is remarkably easy to leave out dynamic data from a saving routine. The
simplest mistake is where most of the data is in arrays, but just a few items
are ordinary integer variables. What you have to look out for is saving all
the arrays but forgetting, say, the number of monsters killed.

Unless your game is vast and takes up all available disk space, I
recommend that your program saves dynamic data in a special directory
within the game application. There is then no need for the player to hunt
out separate disks, remembering which are needed. Your saving and
loading system becomes simpler too, as you only need to scan the
relevant directory and present a list of the player positions available.

As usual, there is an exception to this. If your game is implemented as a
fully multi-tasking application, it makes sense to use a distinct file type, so
that a player double clicking on this will load the application and game
together in true desktop fashion.

Strategy

This chapter is a bit of a hotch-potch really. There is no easy classification
in this group, as it covers everything from Ludo to Crib. Essentially, we are
talking about the more static games, sometimes known as parlour games.
The ability to think many moves ahead is far more important than speed,
and this is reflected in a rather different way of using the computer. All the
real work is now being done when nothing is happening to the screen. A
side effect of this is that such games are likely to be far more amenable to
multi-tasking. This is an extreme contrast to arcade games where
everything has to happen very rapidly in parallel. Again, the fact that the
player will be staring at the display for long periods, means you will have to
devote a great deal of time to producing a polished, but uncluttered layout.

9.1 Algorithms and Rules

Before you can make any progress with this class of game, you need to
develop a clear understanding of the rules, and turn these into a precise
methodology of implementing them - the algorithm. ' In other words.
attempting to build up this kind of game piecemeal, is a fairly certain recipe
for disaster. I have to confess that this is a lesson that I learnt the hard
way some years ago, on my first attempt at Othello.

9.1.1 Regional variations

It seems that the older, and better known a game is, the more variations
you are likely to come across. You must therefore try to find out as much
about the regional differences as possible and provide the facility for your
players to be able to select which variant they wish to play. Ideally you

Strategy 207

should give them the option of saving their preference on the disk so that
they don't need to set the options each time they play.

Two games that come to mind where this is particularly relevant are
Patience and Draughts. There are so many variations in Patience that,
unless you're going to write a particularly unusual form, you may decide to
avoid altogether! However, in the best known seven column form there are
a number of major differences that you can easily accommodate. A few of
these are:

o Permit any picture card to be placed in any empty column

O Shuffle remainder stack each time it has been worked through

O Allow only one pass through the stack

O Allow ordered cards to be split and moved from one line to another.

The problem with Draughts is the huffing rule. You will find this is quite
hotly contested as to whether it should be applied or not, so if you're
programming Draughts do make sure you provide huffing as an option.
The fragment below shows how easy this is to implement.

IF cantake% AND huffrule% PROCtest ELSE PROCmovepiece

There is a very obscure variant of this that changes the strategy quite
significantly. One player sets up a double huff situation, so that the
opponent has two choices where a piece has to be taken. Whichever
choice is taken, a huff is called on the other option, resulting in a
guaranteed loss of one piece each.

9.1.2 Symmetrical patterns

When working out algorithms for strategy games it is very easy to forget
that you frequently have a symmetrical layout, and that many possible
moves are simply mirror images of each other, particularly where opening
strategies are concerned. A fairly obvious example of this is Naughts and
Crosses, or Tic-Tac-Toe if you prefer. If you look at Figure 9.1 you will see
that three squares are shaded. These are the only starting locations your
program needs to consider. All the other positions are simply rotations or
mirror reflections of these positions. As a result you can examine the
opening move completely with only three sets of calculations instead of
nine.

208 Archimedes Game Maker's Manual

3

6

7 8 9

Figure 9. 1: The Tic-Tac-Toe start positions

If the computer makes the first move, it is easy to arrange for apparent
changes in opening strategy by randomly selecting the other images of
these starting locations. The fragment below shows how this can be done
using the box numbers of Figure 9.1, although I wouldn't normally
recommend such an inefficient way of doing it.

IF select%=5 THEN
{do nothing}

ELSE
rotate%= RND(4)*2
IF select%=1 THEN rotate%-=l
IF rotate%=5 THEN select%=9 ELSE select%=rotate%

END IF

The position becomes only slightly more complex if the computer makes
the second move. In this case, after rotating the player's move to the form
we recognise, you take the diagonal through 1,5,9. The computer's
response can then be reflected either side of this axis. Here you will find
there are, five possible positions to be examined rather than eight.

With a game as simple as this, with so few possible combinations, it is a
practical proposition to specify directly a fixed set of rules defining how the
computer should respond. However, this is not normally the case.

Strategy 209

9.2 Recursive Computer Moves

Mention recursion to many people and they go weak at the knees. This is
basically because the concept is rather alien to our normal straight-line
style of thinking. Instead of a linear progression of tests and action, with
recursion you perform a few tests, hold the results and perform another
similar set of tests, and repeat this activity, maybe many times, piling tests
on top of groups of tests, until you eventually have a possible best action.
This kind of mental juggling, keeping so many balls in the air, is very
difficult for most people. However the rules for recursive code are usually
quite simple, and it can be very satisfying to watch the computer wind up a
recursive problem then adroitly unwind with a solution.

One point to watch very carefully with recursion is that you always have an
exit point. You will see this in the pseudo code example below, for a four in
a line type game. The recursion entry is only made after all possible
terminating conditions have been tested. The second test is remarkably
easy to forget.

Recursion entry;
If this move completes a line, store move details and exit;
If no more moves possible, set flaq and exit;
Swap opponent with computer and call recursion entry .

9.2.2 Minimaxing

The basic concept behind recursive algorithms is quite straightforward. The
computer finds the first valid position for its next piece. It tests to see if it is
a winning move, and if not it plays devil's advocate to see if that move
could give the opponent the winning move. The computer then checks to
see if any of the opponent's possible responses could provide a winning
computer move at the next level. If the move looks dangerous the
computer will try the next valid position, until either a winning position has
been found, or all the positions have been investigated. In the latter case,
depending on the precise algorithm, the computer will either choose the
move that is likely to produce a win for itself in the least number of moves,
or take the most number of moves to allow a win for the opponent. This
latter option could produce a computer win if the human player makes a
mistake.

This searching out best or computer maximums in parallel with worst or
opponent minimums, often called minimaxing, can make huge demands on
processor time. In almost all games, any move made will give quite a
number of choices to the opponent, and if all of these are investigated, you

1210 Archimedes Game Maker's Manual

will see that the number of tests made rapidly expands in a tree like
structure until it becomes impractical to continue.

9.2.3 Limiting recursion

What is needed, therefore, are methods of limiting the number of tests that
are m_ade recursively. The first, and most obvious way of doing this is to
control the number of moves the computer looks ahead. This simply
involves the use of a counter to control the recursion depth . Putting this
under player control can be used to give coarse difficulty settings.

A similar, but subtly different solution is to limit the time the computer can
take following any one recursive path. Where the former method gives a
fixed cut-off point regardless, using time as the limiting factor enables a
promising line of moves to be investigated more thoroughly.

9.2.3 Pruning

A common technique for time saving is to do some tree pruning. If you are
looking for maximums, say, and branch A has leaves that produce the
values 2, 7, 8 and 6, but the first leaf of branch B produces 9, you don't
need to bother to check any other leaf of branch B as you know that at
least one route in the B branch is better than any in the A branch. You will
still need to check branch C however, unless branch B produced the
maximum value possible. If branch C produces a higher value than B then
you will have to go back and check the remaining parts of B to see if it will
again yield a better value. This is shown in Figure 9.2.

Figure 9.2: Pruning moves

Strategy 211

Note that the pruning attempt of G is not valid. It is easy to become
confused here, but as a general rule you can't prune any of the first
branch, as there is no earlier one for it to better.

Had C given a result of 11 from its first leaf, you would go back to Band look
at the I leaf. If this was greater, say 15, you wouldn't bother with J, but would
go back to looking at the L leaf. In the worst case, with L producing 15 or
more, you would then go back to J and examine this leaf. All this swapping
backwards and forwards may seem wasteful, but I've given the worst case
situation. Usually, there are considerable savings to be made. Also, keep in
mind that although the computer looks ahead several moves, it is only actually
going to make the move at the root of the tree.

9.2.4 Fuzzy thinking

Many games have more than just good or bad moves. With these, if you keep
a count of the quality of the moves, you can develop a strategy of
progressively ignoring the more unlikely situations the deeper you go
recursively, only stopping at the point where no further conditions are tested .
This will speed up calculations to some degree, and give a sort of fuzzy edge
to the computer's thinking. This may not make a particularly smart machine

. game, but it will make it harder for an opponent to predict. This in itself can
make a game far more attractive, and seeming human. Many people have the
idea in their minds that the computer can't possible make mistakes. They will
relax considerably if they see it make a move that they know can be bettered.

9.3 Weighting Schemes
Using recursion is not the only way you can produce intelligent machine
gameplay, and indeed, not the first that most people think of. Instead of just
totalling the number of pieces taken, and the potential gains from the later
moves, you can maintain a board array with the weighting values for the
various positions. Where you have more than one valid position, you should
then perform your recursive scan to find the most advantageous moves. After
this you apply the weightings so that they hold the greatest number of high
value positions, possibly at the cost of actual pieces at this level. This can
become very complicated so you need to strike a balance between improved
machine intelligence and complexity. Mind you, with the simpler games it may
be possible to produce a weighting scheme that is good enough to be able to
do away with recursion altogether.

9.3.1 Key moves

A good example of the way you can improve machine intelligence can be

212 Archimedes Game Maker's Manual

shown with the game Reversi, or Othello as it is sometimes known. If you only
use recursion to pick the best moves you may need to wait a very long time,
going to the depth necessary to beat an experienced player. However, when
you examine the game, knowing the rules, you will see that there are a
number of key positions that can greatly enhance your likelihood of winning.

The most obvious ones are the four corner positions. Pieces placed here
can't be taken so, unless the opponent uses some pretty fancy strategy,
whole lines can be controlled from the corners. This is particularly true if
you command two corners on the same side of the board.

In Figure 9.3 there is one possible set of weightings for the Othello board.
The numbers are only intended as a guide as to the importance of the
positions, not some absolute value. You will notice that I've given the
squares adjacent to the outside squares the lowest values. Generally, if
you put a piece in these squares you are letting your opponent get to the
outer edge, and possibly the commanding position of a corner. Finally, you
can make your weightings dynamic and adjust them as a game progresses
to reflect the changing status of certain moves or positions.

7 2 5 4 4 5 2 7

2 l 3 3 3 3 l 2

5 3 6 5 5 6 3 5

4 3 5 6 6 5 3 4

4 3 5 6 6 5 3 4

5 3 6 5 5 6 3 5

2 1 3 3 3 3 1 2

7 2 5 4 4 5 2 7

Figure 9.3: Othello weightings

Strategy 213

9.3.2 Randomi~ing
Finally, keep your opponent guessing. Where there is little significant
difference between two or more moves, don't make the mistake of always
choosing the first. Your player will eventually be able to follow the pattern
that the machine plays and therefore beat it every time. Instead, make a
random selection, even allowing slightly less advantageous moves to be
made in the earlier stages.

9.4 Introducing Othello

Many games can be reduced to a few simple rules. Following the Othello
example in more detail, we first need to establish the starting conditions.
It's easy to forget that the initial moves may be quite different from any
others. It is a common mistake to try to patch the main game loop to
include starting conditions. This is error prone, and often slows the
program down. It's usually far simpler to have a separate routine.

O The game is started with the first four pieces already placed in the
central four squares with the colours lined up on the diagonals.

Now you can specify the rules for valid moves. This should always be
separate from the main move calculations for two reasons: in the first
place, a quick scan for validity saves time if the move is invalid. Secondly,
the same checking routine can be used for both computer and player
moves.

O Every piece must be placed within the 8 * 8 grid

o Every piece must be placed adjacent to at least one opponent's piece

O There must be a players piece beyond and adjacent to the opponent's
piece, or line of pieces, in at least one direction

O If a piece can't be placed the move is forfeit

o If a piece is wrongly placed the move is forfeit (optional).

Once a valid move has been found, the following rules can then be applied
to develop the game strategy:

o All pieces have the same value

O Board positions have a weighting value

214 Archimedes Game Maker's Manual

o A move that increases the player's piece count is a potential good move

O A move that gives the opponent a chance to increase his count may be
a bad move

o A move that reduces the opponent's piece count to zero is a winning
move

O A move that allows no more moves to be made closes the game.

The first rule is easy to overlook. In a game like Chess, for example, the
pieces would have very different values in a weighting scheme, but board
positions would become less important.

The last two rules inter-relate, in that the very fact of capturing the
opponent's last piece automatically makes any further move invalid for
either player. It is important to be clear about winning moves. The routine
you use must always be able to spot these, and then ignore all other
moves. At the same time you mustn't confuse a winning move, with one
that leads to a win.

In this game, particularly in the early stages, a move that gives the player
more pieces is not necessarily a good move. Similarly a move that allows
the opponent to take pieces may not be a bad move. In a game where
pieces could only be captured once, this would be true, but in Othello an
individual piece can swap colours many times. The unfortunate result of
this is that tree pruning is most unwise. Recursion limiting should be done
with a combination of recursion depth and key move testing, using the
board weighting to evaluate key moves.

9.5 Card Games

Unfortunately, most multi-player card games are impractical, as there is no
way of preventing your opponent from seeing your cards. It would be
possible to develop a game using two machines, linked via their serial
ports, but there would be very little demand. Not many people can justify
two Archimedes! However, games played against the computer are still
quite practical, as most people will readily accept the idea of a computer
player not being able to see your cards, while the computer referee sees
them all.

Strategy 215

9.5.1 Displaying a hand

One of the main difficulties that arises when programming card games, is
the matter of displaying a large number of playing cards in such a way that
they are clearly visible, and yet all fit on the limited screen area in a
reasonable pattern. While you can gain space by overlapping, in exactly
the same way as a player normally does with a hand, this can still leave
you short of space.

If you are programming your game to work within the desktop you can
circumvent this to some extent by using a scrollable window, and only
display about half the cards. If you do this, you must give your player the
option of re-ordering the cards, exactly as he or she would with a real
hand. Actually, I recommend using the desktop, and then defining your
cards as sprite icons. This makes selection and dragging remarkably easy,
as the WIMP does most of the work for you.

If you're not working within the desktop, you will either have to reduce the
size of the playing cards, which will reduce the detail and attractiveness, or
display the cards in blocks. These can then be flicked through with say,
Select and Adjust mouse clicks. I would again recommend using simple
sprites rather than drawn cards. If you want to add a bit of style, you can
have an animated film of the cards being bent as they are placed,
synchronised with a suitable sampled thwack.

9.5.2 Patience layout

Figure 9.4 is a specimen layout for seven card patience. It looks a bit
sparse as it is, but would in reality quickly fill out as the game progresses.
Also, for simplicity, I haven't bothered with the detail of the card faces. The
background should ideally be a dithered green, to give a card table
appearance. The plinths for the stack, and the piles, could either be tinted
for a metallic effect, or better still, given a wood grain appearance.

You will see that card edges are shown to give an indication of the number
of cards in the piles. This is particularly relevant for the laying out columns,
as there is unlikely to be enough room to show the reversed cards spaced
down as they normally are, along with the visible cards.

Assuming a mouse driven game, everything that is needed is visible.
Cards would be selected by dragging. The game can be re-started by
clicking on the New icon, and the program abandoned, returning to the
desktop, by clicking on the Quit icon. If you wanted to, you could easily
add another two icons for load and save game options.

216 Archimedes Game Maker's Manual

Figure 9.4: Patience layout

9.5.3 Implementing Patience

It is useful to have a brief look at the game itself from data structure point
of view. You need to know how many cards are in each of the columns,
whether they are. visible or not, and what the cards are. In the stack, you
need to know how many cards are in the unused section and how many in
the used section, again with their values. With the piles you only need to
know the number of cards in each pile. Logically you know the top card of
each pile as they are in numerical order.

The stack can easily be held as a pair of arrays. As 28 cards are already
placed in the columns, the array sizes only need to be 24. The zero
element can be used to indicate the number of cards in the stack, or more
specifically, the pointer to the next card to be handled, while all the other
elements are actual card values. As the stack is handled, three card values
are moved from the unused stack to the used stack, and the pointers
updated. As cards are lifted from the used stack, its pointer is simply
decremented. When the entire stack has been seen, a simple swap of the
contents, remembering to reverse the order, is all that's needed.

Columns are also best implemented as arrays. This time the array size has
to be 17. This is to allow for the, admittedly unlikely, possibility that the first

Strategy 217 :

column, while still with seven cards, will have the whole of an ordered line
on top of it. This time you need to maintain two pointers per array. The
zero element can again be the pointer to the last card. However, you also
need a pointer to the first visible card, or last hidden card, whichever is
most convenient.

Finally, the ordered piles can be simple integers with a card count. When
the sum of these integers is 52, the game has been successfully
completed.

9.5.4 Shuffling

One of the commonest mistakes made with card games is with regard to
shuffling the pack. I've seen some of the most horrendous and convoluted
programs that attempt to find random numbers between 1 and 52, then
check that they haven't already been selected, place them in an array and
increment a counter. If you stop and think for a moment you will realise
that it is far simpler to shuffle your array in exactly the same manner as
real cards.

First fill it linearly with the numbers 1 to 52 using a FOR NEXT loop. This
tak.es care of the problem of ensuring that there are no repeats. All you
need to do now is randomly select array positions and swap their contents.
To get a good shuffle you need to perform about twice as many swaps as
there are items in the array, 104 in this case. You don't need to prevent
your random selections repeating the same swaps. As with real shuffling
moving a card out of a position and then back again is quite valid.

You will see that almost an identical approach can be used for similar
counted choices, such as shaking the bag for a Bingo session, or mixing
up dominoes before laying them out.

9.6 Tile-based Games
This sub class in itself, covers quite a wide range, and includes Dominoes,
Mah Jong and Scrabble. The special problems here are not so much that
of display, but orientation and matching. Having said that, Mah Jong tiles
can take up considerable space. ·

Taking Dominoes as an example, you need to establish, not only which
dominoe is being handled, but also its orientation, as well as the
orientation of those already laid. This is of particular importance with the
fives and threes game, where both you and the computer will want to

218 Archimedes Game Maker's Manual

maximise your fives and threes count. In this case you not only need to
know that a match has been made, but also the total spot count. This has
to be a multiple of five or three to score.

Probably the simplest way of handling this sort of problem is by using a
two dimensional array for the dominoe stacks of both players. For the
dominoes already laid, you only need to keep a record of the two end
points. For convenience these could be marked with two variables that
would be set to spot count the ends of the first dominoe placed. From then
on, they would be set to the free end of each dominoe placed at that
position. Below is a list of the sort of tests that you would need to make for
this.

O Does dominoe left end match stack left end?

O Does dominoe right end match stack left end?

o Does dominoe right end match stack right end?

O Does dominoe right end match stack right end?

O Does left placing give 5 or 3?

o Does right placing give 5 or 3?

O Does left placing give higher 5 or 3 than right placing?

O Is this the highest scoring dominoe?

These tests would be in addition to the normal strategy assessment for
obstructing the opponent, and maximising the options for placing all
dominoes.

9.7 Word Games
Although many word games fit in the sub-class of tile games, by virtue of
the orientation and matching necessary for individual letters, and indeed,
whole words, the core of this type of game is the dictionary. There are
public domain dictionary utilities available, but you can generate your own
without too much difficulty.

Initially you can use a system similar to that suggested for adventure
games, where you have a simple array holding a list of words. You then
scan this for a match with the word being tested. However, this becomes

Strategy 219

impractical with a dictionary of any size. The solution, in part, is to use a
binary search.

9.7.1 Binary searching

For this, it is essential that the word list is in alphabetical order. As you
don't want to waste time with sorting algorithms, the most practical solution
is to ensure that the dictionary is alphabetically ordered in the first place.

For the actual search, you start by dividing the word list in two, then
compare your word with the one in the middle of the list. If it matches, you
flag it accordingly, otherwise, if it is alphabetically lower you repeat the
operation with the bottom half of the list. If it is higher, you work on the top
half. This is repeated until either the word is matched, or the list can't be
split any further.

9.7.2 Text compression

Another way you can slightly improve the response time of your dictionary
is by using text compression, making the strings that have to be compared
shorter, and also reducing you memory requirements. Incidentally, this is
again applicable to adventure games.

The byte-by-byte representation of characters in strings is very wasteful,
out of a possible 256 values, you only use 26. These can be represented
in only five bits instead of eight This fact is used in Listing 9.1 which times
the difference between compressed and non-compressed binary search­
ing.

Listing 9. 1: Dictionary

10 REM > Dictionary
20 :
30 PROCinitialise
40 :
50 REM test routines
60 ;
70 PRINT'"'Sortinq normal Time = "·
BO TIME=O
90 PR0Csort(word$())

100 PRINT;TIME
110 ;
120 PRINT "Sorting packed Time= "·
130 TIME=O
140 PROCsort(pack$())
150 PRINT;TIME

220

160
170 a$=word$(103)
180 p$=pack$(103)

Archimedes Game Maker's Manual

190 PRINT""Performing searches ";N%+1 " times"
200
210 PRINT"' Searching normal Time=
220 TIME=O
230 FOR I%=0 TO N%
240 f%=FNmatch(a$,word$())
250 NEXT
260 PRINT;TIME
270
280 PRINT "Searching packed Time
290 TIME=O ·
300 FOR I%=0 TO N%
310 f%=FNmatch(p$,pack$())
320 NEXT
330 PRINT;TIME
340 END
350
360 DEF PROCinitialise
370 wordnum%=999

...
'

380 DIM word$(wordnum%) , pack$(wordnum%)
390 N%=499
400 a$=STRING$(16," . ")
410 b$=a$
420 MODE 12

REM fixing string lengths
REM speeds up swaps

430 PRINT'"'Generating ";wordnum%+1 " dummy words - Please wait";
440 FOR I%=0 TO wordnum%
450 word$(I%)=a$
460 word$(I%)=FN1ine
470 pack$(I%)=a$
480 pack$(I%)=FNpack(word$(I%))
490 NEXT
500 ENDPROC
510
520 DEF FNline
530 LOCAL I%,a$
540 FOR I%=0 TO 4+RND(5)
550 a$+=CHR$(64+RND(26))
560 NEXT
570 =a$
580
590 DEF FNpack(a$)
600 LOCAL s%,d%,b$
610 REPEAT
620 PROCget
630 d%=s%
640 PROCget
650 d%=d% OR s%<<5
660 b$+=CHR$ d%
670 d%=s%>>3

Strategy 221

680 PROCget
690 d%=d% OR s%<<2
700 PROCget
710 d%=d% OR s%<<7
720 b$+=CHR$ d%
730 d%=s%>>1
740 PROCget
750 d%=d% OR s%<<4
760 b$+=CHR$ d%
770 d%=s%>>4
780 PROCget
790 d%=d% OR s%<<1
800 PROCget
810 d%=d% OR s%<<6
820 b$+=CHR$ d%
830 d%=s%>>2
840 PROCget
850 d%=d% OR s%<<3
860 b$+=CHR$ d%
870 UNTIL a$=""
880 =b$
890
900 DEF PROCget
910 s%=ASC a$-64
920 a$=RIGHT$(a$,LENa$-l)
930 ENDPROC
940
950 DEF PROCsort(word$())
960 LOCAL a$,a%,b%,n%
970 n%=DIM(word$(),l)
980 PROCqsort(O,n%)
990 ENDPROC

1.000
1.01.0 DEF PROCqsort(s%,e%)
1020 IF s%>=e% ENDPROC
1.030 a$=word$((s%+e%)>>1)
1040 a%=s%-l
1050 b%=e%+1
1060 REPEAT
1070 REPEAT
1080 a%+=1
1090 UNTIL word$(a%)>=a$
1100 REPEAT
1110 b%-=l
1.120 UNTIL word$(b%)<=a$
1130 IF a%<b% SWAP word$(a%),word$(b%)
l.l.40 UNTIL a%>=b%
1150 PROCqsort(s%,a%- l)
1160 PROCqsort(b%+1,e%)
1.170 ENDPROC
1180
1190 DEF FNmatch(a$,word$())

222

1200 LOCAL s%,e%,h%,f%
1210 e%=DIM(word$(),1)
1220 REPEAT
1230 PROCbin(s%,e%)
1240 UNTIL f%

1250 =f%
1260 :
1270 DEF PROCbin(s%,e%)
1280 IF e%>=s% THEN
1290 h%=(e%-s%)>>1
1300 IF a$>word$(s%+h%) THEN
1310 PROCbin(s%+h%+1,e%)
1320 ELSE
1330 IF a$<word$(s%+h%) THEN
1340 PROCbin(s%,e%-h%-1)
1350 ELSE
1360 f%=s%+h%+1
1370 END IF
1380 END IF
1390 ELSE
1400 f%=TRUE
1410 ENDIF
1420 ENDPROC

Archimedes Game Maker's Manual

A list of random words is generated in the initialisation, of eight characters
average length. At the same time a compressed copy of each word is
produced by FNpack. As it stands, the routine assumes that all characters
are upper case letters. The two lists are then sorted with a quicksort
routine, and for interest this is timed. Finally the two lists are searched for
a string known to be at position 103. This value is chosen to reduce the
possibility of unnaturally fast binary divisions occurring.

You will see that the search is in fact extremely fast. It needs 500 iterations
to get a meaningful timing. What is even more impressive, is that if you
increase the word list to 10,000, the generating time is several minutes,
and the sorting time slows considerably too, but the search time is hardly
affected. Also the larger the number of words, the more reliable the time
differences become. With 10,000 words, both sort and search times are
about 10% faster using packed words, and the memory saving is around
25%

9.7.3 User dictionaries

One problem with word games is the fact that your dictionary will be
incomplete. Therefore you should make some kind of allowance for
additions to be made. The simplest solution is to maintain a text file of
additional words. This is built up by the game itself in response to

Strategy 223

unmatched words and, the next time the game is played, is loaded into a
separate array at the start. As your players are likely to generate a much
smaller list than the main dictionary, you can probably get away with a
simple linear search of this list. If any new words are added as the game
progresses, a flag should be set, and when the game closes the player
should be offered the choice of saving the new additions. To avoid the
interruptions caused by continual requests for confirmation that a new word
has been entered, your game could have a switchable learn mode. For
normal play, this can be disabled so that the computer can respond quickly
to wrong spellings.

9.8 Strategy in 30
A few games, such as Naughts and Crosses, have been revamped with
three dimensional implementation. This can make an otherwise dull game
considerably more exciting. Theoretically, almost any two dimensional
board game can be made three dimensional. However, personally, I'd hate
to try to play 30 Chess.

In principle, all you need to do is add an extra dimension to your board
array, and another counting loop in your move validation and computer. On
the downside is the fact that all calculations will now take very much
longer. So much so, that a computer-human game may not be practical,
and you may have to satisfy yourself with human-human implementation.

Unfortunately, many programmers, shrink from a true 30 layout, and just
place a group of boards alongside each other. This not only detracts from
the game play, but also significantly changes the difficulty of the game. In
some cases it makes it easier, in others its harder. Using the perspective
ideas in Chapter 6, you can draw out a board relatively simply, and if you
like, use scaled sprites for the pieces. To give the player more control, you
can also use the 30 rotation formulae, so that he or she can view the
game from any angle.

The easiest way to produce an unambiguous display, is to use different
tints for the pieces on different levels. Logically you would use the darkest
tint for the lowest board. Taking 30 Naughts and Crosses as an example,
all four boards can be uniquely identified. If you have more than four
layers, you will need to use combinations of colours and tints that show an
obvious progression. This is quite easy in the 256 colour modes, if you
refer back to my earlier suggestion of selecting colours bit-wise.

224 Archimedes Game Maker's Manual

If you are using the mouse to pick up pieces, which is really just about
essential, you should use inverse video or switch to flashing colours to
highlight the piece that the mouse is looking at. As you move the mouse,
the piece should follow it in jumps, always staying clearly placed within the
playing grid.

ARM Code

10.1 Why Use It?

The obvious reason that tempts programmers to use ARM code in a game
is, of course, that of speed chasing. However, there are other equally
relevant reasons. It may be that you want to run background activities,
such as music. Rise Os simply might not have a routine that you want, or
only in a form that is impractical for your particular need. With practice, you
can develop highly efficient, complex routines that are completely
unimaginable on many processors, and yet seem to employ remarkably
little code.

10.2 Fast Object Tables

In Chapter 7 I described the use of movement tables for sprite plotting .
These are extremely easy to implement as byte arrays, putting them in a
form readable within ARM code. This is particularly beneficial where, as in
this case, you have one table providing pointers into another table. The
sophisticated stack and indirect addressing features of the ARM processor
really come into their own here. In principle, Listing 10.1 is only slightly
changed from the original Listing 7.1, but you will see from the number of
characters printed, it runs much faster.

226

Listing 10. 1: Movement tables

10 REM > ARMtable
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCassemble
60 IF INKEY 100
70 CALL code%
80 END
90

100 DEF PROCerror
110 MODE 12
120 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
130 ENDPROC
140
150 DEF PROCinitialise
160 MODE 12
170 MODE 9
180 COLOUR 0,128,0,0

Archimedes Game Maker's Manual

190 PRINT TAB(ll,10) "ARM code movement"
200 PRINT TAB(9,13) "Press Escape to stop"
210 VDU 5
220 maxpoints%=200
230 DIM table% maxpoints%*4
240 numchars%=21
250 DIM char% numchars%*4
260 FOR I%=0 TO numchars%*4-4 STEP4
270 char%!I%=-l
280 NEXT
290 char%!(numchars%*4)=0
300 x%=0
310 y%=512
320 mark%=0
330 PROCline (40)
340 PROCcircle(l28,l)
350 PROCline(lO)
360 PROCcircle(l28,-l)
370 PROCline(55)
380 ENDPROC
390
400 DEF PROCassemble
410 DIM code% &100
420 work=O
430 charbase=3
440 charcount=4
450 tablebase=5
460 tableindex=6
470 mainpointer=7
480 bank=8
490 sp=l3

ARM Code

500 link=l4
510 FOR I%=0 TO 2 STEP 2
520 P%=code%
530 [OPT r%

540 STMFD(sp) !,{link}
550 ADR mainpointer,charadd
560 LDMIA (mainpointer) !,{charbase,tablebase}
570 MOV bank,#1
580 .outerloop
590 MOV R0,#113

MOV Rl,bank
swr "OS_Byte"
EOR bank,bank,#3
MOV RO) #ll2
MOV Rl,bank
swr "OS_Byte"
swr uoc
MOV charcount,#numchars%
.charloop

set display bank
swap bank reqister

set write bank

600
610
620
630
640
650
660
670
680
690
700

LDR tableindex, [charbase,charcount,LSL#2]
CMP tableindex,#0

710 BLGE move
720 SUBS charcount,charcount,#1
730 BGE charloop
740 MOV R0,#19
750 swr "OS_Byte" wait
760 SWI "OS_ReadEscapeState"
770 BCC outerloop exit if Escape pressed
780 LDMFD(sp) !,{PC}
790
800 .move
810 LDR work, [tablebase,tableindex]
820 STR work, [mainpointer,#4] ; build up
830 RSB Rl,charcount,#(ASC"A"+numchars%)
840 STRB Rl, [mainpointer,#8] ; VDU strinq
850 ADD RO,mainpointer,#2
860 MOV Rl,#7
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010

swr "OS WriteN" now print it
CMP tableindex,#mark%-4 update char position
MOVEQ work,#0
LORNE work, [charbase,charcount,LSL#2]
ADDNE work,work,#4
STR work, [charbase,charcount,LSL#2]
CMP tableindex,#16 ; initiate next char?
MOVNE PC, link
CMP charcount,#0
MOVLE PC,link
MOV work,#0
SUB charcount,charcount,#1
STR work, [charbase,charcount,LSL#2]
MOV PC, link
.charadd

227

228 Archimedes Game Maker's Manual

1020
1030
1040
1050
1060
1070
1080
1090
1100

EQUD char%
EQUD table%
EQUW 0
EQUB 25
EQUB 4

two dummy alignment bytes
plot

EQUD 0
EQUD 0
EQUB 0

l
1110 NEXT
1120 ENDPROC
1130

move
x co-ordinate
y co-ordinate
character

1140 DEF PROCline(n%)
1150 FOR I%=0 TO n%
1160 x%+=12
1170 table%!mark%=x%
1180 mark%+=2
1190 table%!mark%=y%
1200 mark%+=2
1210 NEXT
1220 ENDPROC
1230
1240 DEF PROCcircle(rad%,dir%)
1250 start=-PI/2
1260 step=PI/20
1270 end=start+PI*2+step
1280 FOR I=start TO end STEP step
1290 table%!mark%=x%+COS(I*dir%)*rad%
1300 mark%+=2
1310 table%!mark%=y%+SIN(I*dir%)*rad%+rad%*dir%
1320 mark%+=2
1330 NEXT
1340 ENDPROC

In order to get the fastest possible character printing, the move and print
commands are combined in a single VDU string. OS_WriteN uses the
low-level VDU drivers, so is very much faster than individual calls to
OS_WriteC would be.

As the Y coordinate in the VDU string follows the X coordinate only two
bytes later, it makes sense to set up a single interleaved table for both.
Values taken from this can then be handled as whole registers by the ARM
routine. The fiddle with the address of the VDU string, ensures that we are
working word aligned, and therefore most efficiently, for all instructions
apart from the actual VDU call itself.

A point of interest is where I've used the load multiple registers instruction
to set up the charbase and tablebase pointers, while leaving mainpointer at
a sensible position for both filling and printing the VDU string. It is always

ARM Code 229

worth trying to get as much out of your load and store instructions as you
can, as these are the most time hungry operations.

10.3 Direct Screen Manipulation

In some earlier code fragments, there was a degree of screen handling but
at a rather crude level. Once you start to use ARM code, the speed of
execution is so much faster that detailed screen handling becomes
practical. When selecting screen modes, with a view to using direct
manipulation, you should bear in mind that it is far easier to handle the
modes where one byte exactly represents one pixel. These are, of course,
the 256 colour modes. In the lower resolution modes it may be two or four
pixels and in Mode O it's eight. If you use these lower modes you will have
to do a lot of bit manipulation to get full pixel control, so it may not be worth
the effort. However, if your routines can usefully handle adjacent pairs of
pixels, the 16 colour modes become as easy to handle as the 256 colour
modes.

A delight to many programmers with experience of the older BBC Model B,
is the fact that the Archimedes screen is handled as one continuous line of
bytes, scanning from left to right, in a similar fashion to that of the VDU
itself. To obtain access to this, the operating system allows you to read not
only the current start of the screen in memory, but its size and the length of
the lines in bytes, and therefore by simple division the number of lines in
the screen.

The screen storing routine of Chapter 4 used this information to get all the
information it needs to find correctly the start of the screen, allow for which
screen bank was currently displayed, and then copy it line by line to the
memory area reserved for it. However, you can do far more than this.

By now, you have probably seen a number of impressive demos that are
passed around PD libraries. One of the commonest features of these are
various starfields. Listing 10.2 is a sideways scrolling starfield generator,
that is remarkably simple to implement. It uses a plot-move-rubout
technique for a smooth scrolling effect without the need of banked screens.
The twinkling effect that sometimes takes place, is due to the occasional
plotting of one star directly on top of another, and actually enhances the
effect.

230

Listing 10.2: Starfield generator

10 REM > Starfield
20
30 PROCinitialise
40 PROCassemble
50 PROCfill
60 GCOL%110101
70 RECTANGLE FILL 0,0,1279,255
80 RECTANGLE FILL 0,768,1279,1023

Archimedes Game Maker's Manual

90 PRINT TAB(l0,27) "Press Escape to stop"
100 CALL code%
110 END
120
130 DEF PROCinitialise
140 MODE 13
150 OFF
160 PRINT TAB(l2,7) "Please wait"
170 DIM block% 19
180 block%!0=148:
190 block%!4=7:
200 block%!8=-l

REM screen base address
REM screen size

210 SYS "OS_ReadVduVariables",block%,block%+12
220 screen%=block%!12
230 size%=block%!16>>1: REM only want a half screen
240 screen%+=(size%>>1): REM offset by a quarter screen
250 stars%=2048
260 ENDPROC
270
280 DEF PROCassemble
290 DIM code% &50+stars%*3
300 fx=O
310 offset=l
320 speed=2
330 colour=3
340 screenbase=4
350 stack=5
360 end=6
370 new=7
380 blank=8
390 sp=l3
400 link=l4
410 FOR I%=0 TO 2 STEP 2
420 P%=code%
430 [OPT I%

440
450
460

MOV
MOV
LDR

blank,#0
fx,#19
screenbase,start

470 LDR end, stop
480 . scroll
490 ADR stack, index
500 .pass

ARM Code

510 LDMIA (stack) !,{offset,speed,colour}
520 SUBS new, offset, speed
530 MOVMI new,#size%<<1
540 STR new, [stack,#-12]
550 STRB blank, [screenbase,offset,LSR #1]
560 STRB colour, [screenbase,new,LSR #1)
570 CMP stack, end
580 BLT pass
590 SWI "OS_Byte"
600 SWI "OS_ReadEscapeState"
610 BCC scroll
620 MOV PC, link
630
640 . start
650 EQUD screen%
660 . stop
670 EQUD index+stars%*3
680 .index
690
700 NEXT
710 ENDPROC
720
730 DEF PROCfill
740 N%=index
750 FOR I%=1 TO stars%
760 R%=RND(4)
770 S%=RND(4)
780 IF R%=4 AND RND(3)>1 R%=1
790 IF R%=3 AND RND(2)=1 R%=0
800 !N%=RND(size%<1)
810 N%!4=R%+S%-l
820 CASE R% OF
830 WHEN O:N%!8=3
840 WHEN l:N%!8=3
850 WHEN 2:N%!8=S%+43
860 WHEN 3:N%!8=S%+207
870 WHEN 4:N%!8=S%+251
880 ENDCASE
890 N%+=12
900 NEXT
910 ENDPROC

231

The operation of this program relies on the fact that, as mentioned before, the
screen can be regarded simply as a long line of bytes. Once you know where
the start of this line is, and its length, you can put bytes directly to this area
using the screen start, or base address, with an offset that you know is no
greater than the size of the screen. To get movement sideways, all that is
necessary is to add or subtract a small amount from the address you use for
putting each byte. If you know how many bytes there are in a screen line, also
available from the same OS call, adding and subtracting multiples of this will
have the effect of moving points up and down.

232 Archimedes Game Maker's Manual

There is quite a complex relationship between the on-screen colours and
the byte values associated with them. The easiest way to find out which
byte values to use, is simply to plot the colour you want to the top corner of
the screen, then read it back with an indirection peek, having first found the
start of the screen. This is shown in the following fragment:

DIM block% 11
!block%=148
block%!4=-l
SYS "OS_ReadVduVariablea",block%,block%+8
screen%=block%!8
GCOL%100111 TINT &40: REM the colour you want to find
POINT 0,1023
PRINT ?screen%

10.4 ARM Sprites
If you've decided to program that ultimate fast action super invaders game that
everyone will be amazed by, then I'm afraid you will have to abandon, not only
Basic, but also the sprite handler itself. Acorn's handler is intended to be a
general purpose tool, which will perform well over a wide range of screen
modes, inside and outside the desktop. What you really need is a dedicated
sprite controller, that has none of the overheads of the Rise Os sprite handler.

The sprites you want to define, will be intended to operate in only one
mode, with a fixed palette, and in all probability at a fixed scale. Your
sprites won't need names in string form, nor will they need to carry their
size information, because you will access them from a lookup table of
address offset screen positions, and possibly sizes as well. This table will
have been created at the same time as the sprites, probably in some other
generating program, and then saved as a data file along with your sprites.

10.4.1 Simple sprites

We will start by looking at the easiest to produce, that is, sprites that are
intended to go only on a single colour background, where overlapping is
unimportant, as these sprites don't require any complicated masking to be
performed. Where you have sprites of different sizes, it is often worth using
separate dedicated routines for each sprite size.

Another point worth consideration is whether you can fiddle the sprite size
and screen positions so that you are always working word aligned. If you
can do this, you can make dramatic gains in speed and efficiency. Listing
10.3 shows this in action.

ARM Code

Listing 10.3: ARMsprites

10 REM > ARMsprite
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCfill
60 PROCassemble
70 CALL code%
80 END
90

100 DEF PROCerror
110 MODE 12
120 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
130 ENDPROC
140
150 DEF PROCinitialise
160 MODE 15
170 MODE 13
180 OFF
190 PRINT TAB(l2,7) "Please wait" TAB(ll,11) "Escape to stop"
200 COLOUR 130
210 numsprites%=52
220 spritewidth%=32
230 spriteheight%=32
240 colours%=8
250 DIM block% 15,b2% 15
260 block%!0=149:
270 block%!4=7:
280 block%!8=6:
290 block%!12=-l

REM screen base address
REM screen size
REM line length

300 SYS "OS_ReadVduVariables",block%,b2%
310 screen%=b2%!0
320 size%=b2%!4
330 line%=b2%!8
340 height%=size% DIV line%
350 DIM table% numsprites%*20
360 DIM spritearea% colours%*spritewidth%*spriteheight%
370 ENDPROC
380
390 DEF PROCfill
400 FOR K%=0 TO colours%-l
410 FOR y%=0 TO spriteheight%-l
420 FOR I%=0 TO spritewidth%-l STEP 4

233

430 V%=spritearea%+(K%*spriteheight%*spritewidth%+J%*spritewid
th%+ I%)

440 b%=K%*32+RND(l6)+8
450 IF I%>15 AND J%<15 OR I%<15 AND J%>15 !V%=b%+(b%<<8)+(b%<<

16)+(b%<<24) ELSE !V%=0
460 NEXT
470 NEXT

234

880
890
900
910
920

. mainloop
MOV R0,#19
SWI "OS_Byte"
MOV R0,#113
MOV Rl,bank
SWI "OS_Byte"
EOR bank,bank,#3
MOV RO, #112
MOV Rl,bank
SWI "OS_Byte"
SWI &lOC
CMP bank,#2

Archimedes Game Maker's Manual

d i splay and write

; and clear screen

930 ADDEQ screenbase,screenbase,#size% ensure we write
940 SUBNE screenbase , screenbase,#size% to correct bank
950 MOV tablepointer,#numsprites%-1 qet count then x 20
960 ADD tablepointer , tablepointer,tablepointer , LSL #2
970 ADD tablepointer,tablebase,tablepointer,LSL #2
980 .spriteloop

ARM Code

990 BL plot
1000 SUB tablepointer,tablepointer,#20
1010 CMP tablepointer,tablebase
1020 BGE spriteloop
1030 SWI "OS_ReadEscapeState"
1040 BCC mainloop
1050 LDMFD (sp) !,{PC}
1060
1070 .plot
1080 LDMIA (tablepointer),{dX,dY,Xpos,Ypos,spritedata}
1090
1100 CMP Xpos,#0
1110 CMPNE Xpos,#line%-spritewidth%
1120 MVNEQ dX,dX
1130 ADDEQ dX,dX,#1 ; check X limits
1140
1150 CMP Ypos,#line%
1160 ADD work,Ypos,#line%*(spriteheight%)
1170 CMPNE work,#size%
1180 MVNEQ dY,dY
1190 ADDEQ dY,dY,#1 check Y limits
1200
1210 ADD Xpos,Xpos,dX update positions
1220 ADD Ypos,Ypos,dY and store
1230 STMIA (tablepointer),{dX,dY,Xpos,Ypos}
1240
1250 ADD Xpos,Xpos,screenbase
1260 ADD Xpos,Xpos,Ypos
1270 ADD datablock,spritedata,#spritewidth%*spriteheight%
1280
1290 .block
1300 ADD dataline,spritedata,#spritewidth%
1310 .line
1320 LDMIA (spritedata) !,{RO-R3}; slop it over in
1330 STMIA (Xpos) !,{RO-R3} 4 register lumps
1340 CMP spritedata,dataline
1350 BLT line
1360 ADD Xpos,Xpos,#line%-spritewidth%
1370 CMP spritedata,datablock
1380 BLT block
1390 MOV PC, link
1400 .screenadd
1410 EQUD screen%
1420 EQUD t.ible%
1430 l
1440 NEXT
1450 ENDPROC

235

Because we are using our own dedicated sprites, in a known screen
configuration, there is a lot of information that we don't need to store, that
is essential in Acorn's generalised sprite handling routines.

236 Archimedes Game Maker's Manual

Simple though it is, this sprite plotting routine is quite impressive, and
certainly useful for creating backgrounds, or non colliding monsters. It can
plot over 50 sprites of 32 x 32 pixels at 50 frames per second without any
jitter. This is largely due to keeping everything word aligned, hence there
are considerable movement restrictions. One result is that horizontal and
vertical movement can only be in powers of two.

There is the added proviso that for smooth action, the minimum value for
horizontal movement is four, so as it stands, vertical movement can be
slower than horizontal movement, while remaining smooth. This is not
necessarily a disadvantage. A close look at some commercial games will
reveal the fact that other programmers have discovered this!

You should bear in mind, that the routine can only handle sprites that stay
on the screen all the time, and that in this particular example only primitive
edge detection has been used, so you can't reliably change the movement
speeds at all.

The sprite plotter uses a single, word aligned table with five words for each
sprite, as follows:

Byte
offset Function
+O Horizontal movement
+4 Vertical movement
+8 Horizontal position
+ 12 Vertical position
+ 16 Address of sprite data

Further efficiency is gained by keeping the width of the sprites themselves
to multiples of 16 bytes. This allows us to use multiple register loads and
saves, using four registers at a time, in the main plotting loop.

You will see that all vertical position and movement calculations are kept in
line multiples. This avoids any time wasting multiplication. Simple additive
increments, calculated at the end of each plotting line, are all that's needed
to keep the pointers in step.

In order to make the best use of the registers available, some of them are
overwritten in the main plotting routine. This does no harm as they are
finished with by then. It is a point you need to watch very carefully though .
It is remarkably easy to forget, and try to re-use a register that was a
pointer of some sort, only to get Address exception, or Abort on data
transfer errors.

ARM Code 237

It is a false economy to try to make one plotting routine do several different
jobs with extra, time wasting flags and tests needed to identify each type of
sprite action. If, for example, you want to include some non-word aligned
sprites, you should use a completely separate routine for these, bearing in
mind that you won't be able to have anything like the same number for the
same plotting speed.

These dedicated routines can be made so short that there probably is little
overall difference in length of code, once you allow for the extra code that
would have been needed for the identification of different sprite types.
Added to this is the fact that the code length will probably be quite
insignificant compared with the sprite data anyway.

10.4.2 Masking

Where you want your sprites to appear to sit on top of the background you
need to identify which parts of your sprite are solid and which are
transparent. This is masking, in exactly the same way as you might use a
stencil to mask areas of lettering on a piece of paper.

There are two ways you can mask your sprites. One way, only really
practical in 256 colour modes, is to scan your sprite byte by byte,
comparing it with your mask. Wherever you have a 1 byte in the mask, you
plot the corresponding byte from the true sprite to the screen. This is rather
tedious and forces you to work only one byte at a time.

A better method seems slower at first, but is actually much faster, as you
are back to using whole registers. In this case, it isn't the sprite that's
masked, but the screen. Here you load a word from the screen at the
address where the sprite is to be plotted. You AND this with a mask that
has the negative of the sprite pattern . This means you have a shell of
background screen which is then ORed with the corresponding word of the
true sprite, and the composite word plotted back to the screen.

Figure 10.1 shows the two types of mask with their corresponding sprite
patterns.

238 Archimedes Game Maker's Manual

Background Sprite

~~----/1 .. ·· ... '.;.

•• '<:\.

Sprite mask

Result
Masked Background

··..... ""' . ..

Figure 10.1: Masking sprites

ARM Code 239

10.4.3 ARM collisions

Although not obvious at first, using the background and merging it with
your sprites, gets you half way towards a very accurate collision system.
Indeed it can almost be called the ultimate pixel collision system.

When you load your background, instead of directly masking it for the
sprites, you first, a word at a time, store a negatively masked copy of it in a
spare register. This is then tested against a one word bit pattern. If it
matches, the word you are about to plot on top of is a colliding object. This
you flag, then carry on as before, merging the background with the sprite
and plotting. When the sprite has been completely plotted you can then
examine the flag, knowing the collision details.

Listing 10.4 shows this masked sprite technique. It is largely derived from
our earlier sprite program but in this example only 20 sprites can be
reliably plotted at the 50 frame rate . As a point of interest, if you don't have
the collision tests, you still only get 25 sprites, so the main time overhead
is the extra loading of data.

Colliding sprites are simply flagged as dead in our example. A dead sprite
has its X coordinate set to &FFOOOOOO. This is an impossible coordinate
value. You could, if you like, have a routine to restore a rational X
coordinate and bring the sprite back to life. Also, instead of killing the sprite
off, you may decide to insert a bounce routine.

As we are using all the registers very heavily, I had to pick a figure that is
equally impossible as a value for work, or for bitpattern. The dead flag is
actually stored outside the plotting routine. Using register values outside
the subroutine that handles them is a bit naughty, so you have to be very
careful to ensure that you know exactly what could be thrown back as you
exit.

Listing 10.4: ARM mask

10 REM > AR.Mmask
20 :
30 ON ERROR PROCerror : END
40 PROCinitialise
50 PROCfill
60 PROCassemble
70 CALL code%
80 END
90 :

100 DEF PROCerror

240

110 MODE 12
120 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
130 ENDPROC
140
150 DEF PROCinitialise
160 MODE 15
170 MODE 13
180 OFF

Archimedes Game Maker's Manual

190 PRINT TAB(l2,7) "Please wait" TAB(ll,11) "Escape to stop"
200 COLOUR 130
210 numsprites%=20
220 spritewidth%=32
230 spriteheight%=32
240 colours%=8
250 DIM block% 15,b2% 15
260 block%!0=149:
270 block%!4=7:
280 block%!8=6:
290 block% !12=-l

REM screen base address
REM screen size
REM line lenqth

300 SYS "OS_ReadVduVariables",block%,b2%
310 screen%=b2%!0
320 size%=b2%!4
330 line%=b2%!8
340 height%=size% DIV line%
350 DIM table% numsprites%*24
360 masks%=colours%*spritewidth%*spriteheight%
370 DIM spritearea% masks%*2
380 ENDPROC
390
400 DEF PROCfill
410 FOR K%=0 TO colours%-l
420 FOR J%=0 TO spriteheight%-l
430 FOR I%=0 TO spritewidth%-l STEP 4
440 V%=spritearea%+(K%*spriteheight%*spritewidth%+J%*spritewid

th%+I%)
450 IF I%>15 AND J%<15 OR I%<15 AND J%>15 THEN
460 b%=K%*32+RND(l6)+8
470 !V%=b%+(b%<<8)+(b%<<16)+(b%<<24)
480 V%!masks%=0
490 ELSE
500 !V%=0
510 V%!masks%=&FFFFFFFF
520 ENDIF
530 NEXT
540 NEXT
550 NEXT
560 FOR K%=0 TO numsprites%-l
570 table%!(K%*24)=(RND(3)-2)*4
580 table%!(K%*24+4)=(RND(3)-2)*line%
590 table%!(K%*24+8)=RND((line%-spritewidth%)DIV 4-1)*4
600 table%! (K%*24+12)=RND(height%-spriteheight%-3)*line%+line%

' ARM Code

610 table%!(K%*24+16)=(K% MOD colours%)*
spriteheight%*spritewidth%+spritearea%

620 table%!(K%*24+20)=&EAEAEAEA :REM collision bit pattern
630 NEXT
640 ENDPROC
650
660 DEF PROCassemble
670 DIM code% &200
680 work=O
690 dX=2
700 dY=3
710 Xpos=4
720 Ypos=5
730 datablock=5
740 mask=5
750 dataline=6
760 spritedata=7
770 bitpattern=8
780 tablepointer=9
790 screenbase=lO
800 tablebase=ll
810 bank=l2
820 sp=l3
830 link=l4
840 maskdata=l4
850 FOR I%=0 TO 2 STEP 2
860 P%=code%
870 [OPT !%

880 STMFD (sp) !,{link}
890 MOV bank,#1
900 ADR work,screenadd
910 LDMIA (work) !,{screenbase,tablebase}
920 .mainloop
930 MOV R0,#19 ; usual screen bank
940 SWI "OS_Byte"
950 MOV R0,#113
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110

MOV Rl,bank
SWI "OS_Byte"
EOR bank,bank,#3
MOV R0,#112
MOV Rl,bank
SWI "OS_Byte"
SWI &lOC
CMP bank,#2

display and write

; and clear screen

ADDEQ screenbase,screenbase,#size% ensure we write
SUBNE screenbase,screenbase,#size% to correct bank
MOV tablepointer,#numsprites%-l get count then x 24
ADD tablepointer,tablepointer,tablepointer,LSL #1
ADD tablepointer,tablebase,tablepointer,LSL #3
.spriteloop
BL plot ·
CMP work,#&FFOOOO collision flag

241

242

1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

Archimedes Game Maker's Manual

bitpattern holds type of collision
tablepointer points to collidinq sprite

SWIEQ &107
STREQ work, [tablepointer,#8] ; kill sprite
SUB tablepointer,tablepointer,#24
CMP tablepointer,tablebase
BGE spriteloop
SWI "OS_ReadEscapeState"
BCC mainloop
LDMFD (sp) !,{PC}

.plot
LDMIA (tablepointer),{dX,dY,Xpos,Ypos,spritedata,bitpattern}
TST Xpos,#&FFOOOO
MOVNE PC, link don't bother with dead ones

CMP Xpos,#0 check X limits
CMPNE Xpos,#line%-spritewidth%
MVNEQ dX,dX
ADDEQ dX,dX,#1

CMP Ypos,#line% ; check Y limits
ADD work,Ypos,#line%*(spriteheiqht%)
CMPNE work,#size%
MVNEQ dY,dY
ADDEQ dY,dY,#1

ADD Xpos,Xpos,dX ; update positions
ADD Ypos,Ypos,dY
STMIA (tablepointer),{dX,dY,Xpos,Ypos} ; store them

ADD Xpos,Xpos,screenbase
ADD Xpos,Xpos,Ypos
ADD datablock,spritedata,#spritewidth%*spriteheiqht%

STMFD (sp) !,{datablock,bitpattern,R9-Rl2,link} ; qrab more reqs
ADD maskdata,spritedata,#masks% ; qet mask address

.block
ADD dataline,spritedata,#spritewidth%
.line
LDMIA (maskdata) !,{R9-Rl2} load mask
LDMIA (Xpos),{RO-R3}

BIC mask,RO,R9
TEQ mask,bitpattern
BICNE mask,Rl,RlO
TEQNE mask,bitpattern
BICNE mask,R2,Rll
TEQNE mask,bitpattern

qet backqround but don't increment

mask backqround to sprite shape
match bit pattern

ARM Code

1640 BICNE mask,R3,Rl2
1650 TEQNE mask,bitpattern
1660
1670 MOVEQ bitpattern,#&FFOOOO
1680 (unlikely bit pattern)
1690 AND R9,R9,RO
1700 AND RlO,RlO,Rl
1710 AND Rll,Rll,R2
1720 AND Rl2,Rl2,R3
1730

flaq collision

mask out sprite shape

1740 LDMIA (spritedata) !,{RO-R3); qet sprite
1750
1760 ORR RO,RO,R9
1770 ORR Rl,Rl,RlO
1780 ORR R2,R2 , Rll
1790 ORR R3,R3,Rl2
1800
1810 STMIA (Xpos) !,{RO-R3)
1820 CMP spritedata,dataline
1830 BLT line

merqe sprite with background

put to screen and increment

1840 ADD Xpos,Xpos,#line%-spritewidth%
1850 LDR datablock, [sp] ; need datablock aqain
1860 CMP spritedata,datablock
1870 BLT block
1880 MOV work,bitpattern
1890 LDMFD (sp) !,{datablock,bitpattern,R9-Rl2,PC) tidy up
1900
1910 .screenadd
1920 EQUD screen%
1930 EQUD table%
1940 J
1950 NEXT
1960 ENDPROC

243

There are two particularly significant points about this collision system. The
first is that without any special effort on your part, it will only make the tests
that are really necessary. This is because each sprite only looks at what is
already on the screen. Therefore it is only going to see collisions with
sprites that have been plotted. Any that are not being plotted for any
reason don't figure at all in the tests.

The second point is that each sprite can be arranged to recognise a
different bit pattern, so that colours can be used to group sprites into
colliding and non-colliding sets. In our example I've set the bit pattern for
all sprites to recognise only a pale blue. This has an interesting side effect.
As the first few sprites to be plotted are reds and greens, these can never
recognise blues that are all plotted later, nor can they ever be recognised
as colliding objects.

244 Archimedes Game Maker's Manual

Careful selection of plotting order and bit patterns can be used to produce
highly detailed collision recognition, with very little extra code overhead. It
is especially pleasing to be able to do this without making any further
alteration to the plotting routine itself.

10.5 Reflected Images
. .

In many games, you can produce quite startling effects by using mirror
images of objects, part objects or backgrounds. While quite impractical in
Basic, these effects are very easy to produce in ARM code. ·

Probably the simplest to consider is where the top half of the screen is
folded down onto the bottom half. We know that the screen is just a
continuous line of bytes, so if you divide the screen size by two you have
the halves necessary for you mirroring. At first thought you'd probably be
tempted to simply use two counters, one stepping forwards and the other
backwards, until they meet in the middle. This will certainly give you a
mirror image, but unfortunately it will also be reversed left to right.

Worse still, if you use blocks of registers for the copying, you will get
stripes of forward image, but stepped in the wrong direction. That may
actually be useful with a symmetrical layout, or for special effects, but the
more likely need is for just vertical mirroring. To do this you need to
reverse the order that the lines are counted in, but not the way the bytes
on each line are.

As you are working in lines you may be inclined to keep a line count for
both halves of the screen, the source and destination counters. In fact you
only need to do this for one. Assuming you are copying from top to bottom,
the source counter only need to be checked against reaching the mid
point. This determines the end of the whole reflection. The destination
however, needs to start at the last line of the screen. It is then checked
against a marker that is exactly one line higher. When the two are equal,
the destination counter has two lines subtracted from it (not one), and the
marker has one line subtracted. This is repeated until the reflection is
completed.

Left to right mirroring is much harder. This is because the order of bytes
needs to be reversed. While it is easier to do a byte at a time it is also
slow, and if you use anything other than a 256 colour mode, you will still
have to reverse some of the bits in each byte.

The solution is to load whole registers, swap their bits into other registers
then store the reversed registers. If you look at Figure 10.2 you will see

ARM Code 245

just how this looks with a Mode 13 screen. This is marked out in pixel
blocks. Obviously, only the first few bytes of the lines are shown, and only
for three lines. You can see that not only do the registers themselves
swap, but as one byte represents exactly one pixel, the bytes themselves
are in reverse order.

Bytes 0

w...
olol 1121311415 1611 1

1 1320 I 321 I 322 I 32311324I325132613271

2 I 640 I 641 I 642 I 643 11 644 I 645 I 646 I 647 I

I .
I .
I .
I .
I .

111615 14 113 121 1 1 ol
I 327 I 326 I 325 I 324 11 323 I 322 I 321 I 320 I
I 647 I 646 I 645 I 644 11 643 I 642 I 641 I 640 I

-·-·-·-·-·-·-·-·-·-·-·-·-·-·+·-·-·-·-·-·-·-·-·-·-·-·-·-

253 I 640 I 641 I 642 I 643 11 644 I 645 I 646 I 647 I
254 I 320 I 321 I n2 I 323 11 324 I 325 I 326 I 321 I
ml ol 11 2 1 31141 5 1611 1

Figure 10.2: Mode 13 screen reflections

.
I .
I .
I .
I .
I

I 647 I 646 I 645 I 644 11 643 I 642 I 641 I 640 I
I 321 I 326 I 325 I 324 11 323 I 322 I 321 I 320 I
1116 1sl 4113121 11 ol

A method of making this reversal, for a 256 colour mode, is shown in the
fragment below. In this case we need to reverse the order of whole bytes.
The register to be reversed is RO and the result is obtained in R1. RO itself
remains unaltered.

MOV Rl,#0
MOV R3,#&FF
ORR R3,R3 , R3,LSL#l6
AND R2,RO,R3
ORR Rl,Rl,R2,ROR#8
MVN R3,R3
AND R2,RO,R3
ORR Rl,Rl,R2,ROR#24

clear results

create mask

invert mask

You can use this method to reverse a group of registers by interleaving
them. This will improve overall efficiency as the mask in R3 will only have
to be built up once, and inverted once for the whole group of registers.

Having resolved the detail, we can look at the overall reflection. What we
need to do, assuming left to right reflecting, is to count up for half a line
from the left for the source, while counting down from the end of the same
line for the destination. When the two counters are equal, half a line is
added to the source register and a line and a half to the destination . This is

246 Archimedes Game Maker's Manual

repeated until the half line addition on the source exceeds the end of the
screen.

With a bit of thought you can produce a routine that will take just one
quadrant of the screen and reflect it both ways, but I'll leave the subject for
now, with a novel reflection program that adds both distortion and tinting.
This is in Listing 10.5 where you can see that only one of four lines is
picked from the source, which now extends over three quarters of the
screen. The registers holding the screen data are then masked to give a
red tint, and then stored as consecutive lines, giving a squashed effect.

Listing 10. 5: Reflection

10 REM > Reflection
20
30 ON ERROR PROCerror:END
40 PROCinitialise
50 PROCassemble
60 IF INKEY 150
70 REPEAT
80 FOR I%=0 TO num%
90 GCOL c%(I%)

100 CIRCLE FILL x%(I%),y%(I%),s%(I%)
110 IF ABS x%(I%)>640 dx%(I%)=-dx%(I%)
120 IF ABS y%(I%)>512 dy%(I%)=-dy%(I%)
130 NEXT
140 x%()=x%()+dx%()
150 y%()=y%()+dy%()
160 F%=USR code%
170 UNTIL FALSE
180 END
190
200 DEF PROCerror
210 MODE 12
220 IF ERR<>17 PRINT REPORT$ " @ " ; ERL
230 ENDPROC
240
250 DEF PROCinitialise
260 MODE 15
270 MODE 13
280 OFF
290 PRINT TAB(9 , 9) "Screen Reflection" TAB(12,13) "Please wait" TAB(

11, 17) "Escape to stop"
300 COLOUR 128+%100000
310 DIM block% 27
320 block%!0=149:
330 block%!4=6 :
340 block%!8=7 :
350 block%!12=-1

REM screen base address
REM line length
REM screen size

ARM Code

360 SYS "0S_ReadVduVariables",block%,block%+16
370 A%=block%!20
380 B%=A%*4:
390 G%=block%!24:
400 C%=G%+block%!16:
410 D%=B%+C%-G% DIV 4:
420 E%=&10101010:

REM 4 line step
REM screen size
REM end of screen

430 F%=1:

REM last quarter screen
REM reflection mask
REM screen bank

440 num%=5
450 DIM x%(num%),y%(num%)
460 DIM dx%(num%),dy%(num%)
470 DIM s%(num%),c%(num%)
480 FOR I%=0 TO num%
490 c%(I%)=RND(31)+31
500 s%(I%)=RND(32)+16
510 x%(I%)=RND(l279)-640
520 y%(I%)=RND(l023)-512
530 dx%(I%)=RND(2)*4
540 dy%(I%)=RND(2)*4
550 NEXT
560 ORIGIN 640,512
570 ENDPROC
580
590 DEF PROCassemble
600 DIM code% &100
610 line=O
620 f ourline=l
630 end=2
640 reflect=3
650 mask=4
660 bank=5
670 size=6
680 linend=7
690 screen=8
700 link=l4
710 FOR I%=0 TO 2 STEP 2
720 P%=code%
730 [OPT I%

740 CMP bank,#2
750 ADDEQ reflect,reflect,size
760 ADDEQ end,end,size
770 MOV screen,reflect
771
780
790
800
801
810
820
830
840

.frameloop
SUB screen,screen,fourline
ADD linend,screen,line

.lineloop
LDMIA (screen) !,(9,12}
ORR 9,9,mask
ORR 10,10,mask

850 ORR 11,11,mask

check screen bank

step back four lines
set end of line marker

qrab 4 req bloc_ks
mask them

247

248

860 ORR 12,12,mask
870 STMIA (reflect) ! , { 9, 12}
880 CMP screen, linend
890 BLT lineloop
900 CMP reflect , end
910 BLT frameloqp
911
920 MOV R0,#19
930 SWI "OS_Byte"
940 MOV RO, #113
950 MOV Rl,bank
960 EOR bank,bank,#3
970 SWI "OS_Byte"
980 MOV RO, #112
990 MOV Rl , bank

1000 SWI "OS_Byte"
1010 MOV RO,bank
1020 SWI &lOC
1030 MOV PC, link
1050]
1060 NEXT
1070 ENDPROC

10.6 ARM Scrolling

Archimedes Game Maker's Manual

slop them back

all done ?

wait

swap banks

clear screen

In Chapter 5 I referred briefly to scrolling in ARM code. Although there are
a great many possibilities for this, I'll only be covering a single basic
method. This is a windowing technique. Listing 10.6 is a program that
produces three such windows onto the same Mode 13 scene, controlled
quite independently. The scrollable area is exactly one screen in size. This
allows us to use bank switching and normal graphic commands to produce
the scene, and even update it later. The simple circle plotting is duplicated
in some cases. This is so that objects that overlap the screen edges
appear to wrap round, giving the appearance of an infinite area.

Listing 10.6: ARMscrol/

10 REM > ARMscroll
20
30 REM A% = start position in stored screen
40 REM B% = d i splay start
50 REM C% = display width
60 REM D% = display height
70 REM E% screen base
80 REM F% screen size
90 REM G% line length

100 :
110 ON ERROR PROCerror : END
120 PROCinitialise

ARM Code

130 PROCassemble
140 PROCdraw
150 REPEAT
160 IF INKEY-98 X%+=4:IF X%>edge% X%-=G%
170 IF INKEY-67 X%-=4:IF X%<0 X%+=G%
180 IF INKEY-80 Y%+=vert%:IF Y%>top% Y%-=F%
190 IF INKEY-105 Y%-=vert%:IF Y%<0 Y%+=F%
200 IF INKEY-122 PROCshiftx(4)
210 IF INKEY-26 PROCshiftx(-4)
220 IF INKEY-42 PROCshifty(vert%)
230 IF INKEY-58 PR0Cshifty(-vert%)
240 autol%+=G%:IF autol%>top% autol%-=F%
250 auto2%+=4:IF auto2%>top% auto2%-=F%
260 WAIT
270 PROCscroll(X%+Y%,frame0%,width0%,height0%)
280 PROCscroll(autol%,framel%,widthl%,heightl%)
290 PROCscroll(auto2%,frame2%,width2%,height2%)
300 UNTIL FALSE
310 END
320
330 DEF PROCerror
340 MODE 12
350 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
360 ENDPROC
370
380 DEF PROCinitialise

249

390 mode%=13 :REM only thing to change for different modes
400 SYS"OS_ReadModeVariable",mode%,7 TO ,,F% :REM checks the mode
410 SYS"OS_ReadModeVariable",mode%,3 TO ,,col% :REM we want not the
420 IF col%<63 ERROR 0,"Not a 256 colour Mode" :REN current one
430 DIM block% 19
440 block%!0=150
450 block%!4=-l
460 SYS "0S_ReadVduVariables",block%,block%+8
470 IF block%!8<2*F% ERROR O,STR$(F%DIV512)+"k needed for screen"
480
490 MODE mode%
500 OFF
510 block%!0=149
520 block%!4=6
530 block%!8=-l

:REM Now we want info for
:REM the current mode

540 SYS "0S_ReadVduVariables",block%,block%+12
550 E%=block%!12
560 G%=block%!16
570 COLOUR 131
580 CLS
590 PRINT TAB(9,2) "Windowed Scrolling"
600 PRINT TAB(5,13) "Scroll" SPC3 "Z X
610 PRINT TAB(5,14) "Move" SPC5 CHR$136 "

139 " " CHR$138
620 PRINT TAB(5,15) "Escape to Stop"
630 xmult%=1280 DIV G%

/"
" CHR$137 " " CHR$

250 Archimedes Game Maker's Manual

640 ymax%=F% DIV G% :REM everytbinq banqs on G% and F%
650 ymult\=1024 DIV ymax%
660 vert%=G%<<2
670 edqe%=G%-l
680 top%=F%-l
690 X%=0
700 Y%=0
710 autol%=0
720 auto2%=0
730 frame2%=G%*32+G% DIV 8
740 framel%=G%*32+G% DIV 2
750 frame0%=G%*136+G% DIV 8
760 width2%=G% DIV 4
770 widtbl%=G% DIV 4
780 widtb0%=G% DIV 2
790 beiqht2%=G%<<6
800 beiqhtl%=G%<<6
810 beiqht0%=G%<<6
820 ENDPROC
830
840 DEF PROCdraw
850 *FX 112 2
860 CLG
870 FOR I%=0 TO 99
880 GCOL 15+RND(47)
890 R%=8+RND(l00)
900 x%=R%+RND(l279-R%)
910 y%=R%+RND(l023-R%)
920 CIRCLE FILL x%,y%,R%
930 IF y%+R%*2>1023 CIRCLE FILL x%,y%-1024,R%
940 IF x%+R%*2>1279 THEN
950 CIRCLE FILL x%-1280,y%,R%
960 IF y%+R%*2>1024 CIRCLE FILL x%-1280,y%-1024,R%
970 ENDIF
980 NEXT
990 *FX 112 1

1000 GCOL 3 TINT 0
1010 ENDPROC
1020
1030 DEF PROCassemble
1040 DIM code% &100
1050 storestart=O
1060 storeindex=O
1070 dispstart=l
1080 dispindex=l
1090 dispwidth=2
1100 inc=2
1110 dispbeiqht=3
1120 dispend=3
1130 screenbase=4
1140 storeend=4
1150 screensize=5

ARM Code

1160 linelenqth=6
1170 endofline=7
1180 storebase=8
1190 lowreg=9
1200 stepcount=lO
1210 highreg=l2
1220 link=l4
1230 FOR I%=0 TO 2 STEP 2

P%=code%
[OPT I%

ADD dispindex,screenbase,dispstart
ADD dispend,dispindex,dispheiqht
ADD endofline,dispindex,dispwidth
SUB inc,linelenqth,dispwidth
ADD storebase,screenbase,screensize
ADD storeindex,storebase,storestart
ADD storeend,storebase,screensize
SUB storeend,storeend,#16

.loop

251

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

CMP storeindex,storeend ; could enter with screen address
BGE fudge ; right on the boundary
LDMIA(storeindex) !,{lowreg-highreg}
STMIA(dispindex) !,{lowreg-highreg} ; slop 4 reqs over

.stopfudge
CMP dispindex,endofline
ADDGE storeindex,storeindex,inc
ADDGE dispindex,dispindex,inc
ADDGE endofline,endofline,linelenqth
CMP dispindex,dispend
BLT loop

.end
HOV PC, link

.fudge
ADD storeend,storeend,#16
HOV stepcount,#8

deals with last & first
4 regs at screen ends
could be 1,2 or 3

.fudgeloop
CMP storeindex,storeend
SUBGE storeindex,storeindex,screensize
CMP dispindex,endofline
ADDGE storeindex,storeindex,inc
ADDGE dispindex,dispindex,inc
ADDGE endofline,endofline,linelenqth
CMP dispindex,dispend
BGE end
LDR lowreg, [storeindex],#4
STR lowreg, [dispindex],#4
SUBS stepcount,stepcount,#1

only move
1 reg over

252 Archimedes Game Maker's Manual

1680 BNE fudqeloop
1690 B stopfudqe
1700 1
1710 NEXT
1720 ENDPROC
1730
1740 DEF PROCshiftx(x%)
1750 le%=(frame0% MOD G%)*xmult%
1760 ri%=((frame0%+width0%)MOD G%)*xmult%
1770 IF x%<0 AND le%=0 OR x%>0 AND ri%=0 ENDPROC
1780 lo%=(ymax%-((frame0%+heiqht0%)DIV G%))*ymult%
1790 hi%=(heiqht0% DIV G%)*ymult%
1800 IF x%>0 RECTANGLE FILL le%,lo%,4*xmult%,hi% ELSE RECTANGLE FILL

ri%-4*xmult%,lo%,8*xmult%,hi%
1810 frame0%+=x%
1820 ENDPROC
1830
1840 DEF PROCshifty(y%)
1850 lo%=(ymax%-((frame0%+heiqht0%)DIV G%))*ymult%
1860 hi%=(ymax%-(frame0% DIV G%))*ymult%
1870 IF y%>0 AND lo%=0 OR y%<0 AND hi%>=ymax%*2 ENDPROC
1880 le%=(frame0% MOD G%)*xmult%
1890 ri%=(width0% MOD G%)*xmult%
1900 IF y%<0 RECTANGLE FILL le%,lo%,ri%,4*ymult% ELSE RECTANGLE FILL

le%,hi%-4*ymult%,ri%,4*ymult%
1910 frame0%+=y%
1920 ENDPROC
1930 :
1940 DEF PROCscroll(A%,B%,C%,D%)
1950 CALL code%
1960 ENDPROC

The heart of scroll action itself, consists of maintaining a pointer to the start
of the displayed portion of the scroll area, which is then modified, by four
byte values for horizontal movement, or 320 bytes, or one line values for
vertical movement. For greater flexibility, the actual display position on the
screen can be altered by modifying its pointer in a similar way.

These parameters, along with the display width and height, are used by
the ARM code routine to transfer the data from the scroll area to the visible
screen. The routine first calculates the screen base offsets for the start and
end points of the display, along with the end of line marker, and a
difference figure used after each display line has been plotted. This sets
the display pointer to the start of the next line. The scroll area pointers and
limits are set in a similar manner, then the main transfer loop is entered.

The main problem here is that of alignment against speed. As before, byte
alignment has been abandoned completely, so that whole registers can be
used simply. However, even this is not good enough for manipulating the

ARM Code 253

huge amounts of memory that have to be transferred quickly. Four word
handling gives the necessary speed, but being simplistic and only allowing
four word scrolling steps, is unreasonable.

A difficulty arises when the window on the scroll area overlaps the end of
the screen end. The main loop handles only four registers at a time, or 16
bytes, if there is say, a one word overlap. If there was no special allowance
made, the routine would try to write three words into a prohibited memory
area. This is the reason for the fudge routine. To allow for all
contingencies, the end of store marker is reduced by four words, and if the
store index reaches this value, eight registers are transferred one at a
time, continually checking for the true end of the scroll area. Once this has
been reached the store index is decremented by an entire screen so that
the routine correctly manages a wrap and carries on from this point. Once
all eight register transfers have been made the main loop is re-entered and
four register blocks are transferred as before.

The final result is that there is a smooth fast scrolling action, with register
transfers being made for all but an insignificant amount of time. There is
however, still one problem. If you scroll the user window carefully
sideways, you will see that every so often it jumps one line up or down,
depending on the scroll direction. This is due to the fact that I've used a
simple line adding system for the store memory. What is happening, is
that, as the store index is incremented it makes no allowance for the fact
that at the end of a line the screen should wrap back to the same line, not
the next line as happens when you just keep counting up through the
screen. To cure this, you need to change the program so that the store
index is incremented by re-calculating the start of each line, then adding an
extra check to subtract a whole line from the index, if it goes through a line
boundary.

As a point of interest, the entry to· the code itself is wrapped up in a
procedure, so that the three separate calls can be made to it with
independent parameters, while the code just accepts register values taken,
apparently, from the same resident integers.

10. 7 Some Final Points

Quite often, integer multiplication is required within ARM code. There is a
temptation just to use the MUL instruction regardless, but this can be very
inefficient. In the first place, you should try to plan your routines so that
wherever possible, powers of two are employed. All you then need to do is
barrel shift left for multiplication, or right for division.

254 Archimedes Game Maker's Manual

A point well worth keeping in mind is the way you can produce quite a
range of seemingly complex fast multiplications with combinations of barrel
shifting, addition and subtraction. Look at the examples below. All of them,
with just one instruction, take the value in RO and without corrupting it
produce a result in R1.

ADD Rl,RO,RO,LSL#l
ADD Rl,RO,RO,LSL#2
RSB Rl,RO,RO,LSL#3
ADD Rl,RO,RO,LSL#3

x2+xl
x4+xl
x8-xl
x8+xl

qives x3
qives x5
qives x7
qives x9

10.7.1 Random numbers

Below is a practical application that also introduces a simple ARM code
random number generator. The number generator itself creates a random
integer, whereas we want a one-of-five selection. Your first temptation
might be simply to mask this to get the range you want. However this won't
work except where the wanted range is a power of two. With some values
masking can appear to work, but actually doubles the chance of certain
numbers appearing. The answer is to mask out one· byte, multiply it by the
range we want then divide by 256. In the example given we end up with a
random number between 0 and 4, a range of 1 to 5, as we wanted .

. random
LDR RO, seed
CMP R0,#0
MOVEQ R0,#255
MOV R2,#17

.random_loop
MOV Rl,RO,ASR #13
EOR Rl,Rl,RO,ASR #24
MOVS Rl,Rl,ROR #1
ADCS RO,RO,RO
SUBS R2,R2,#1

BNE random_loop
STR RO, seed
AND RO,RO,#&FF
ADD RO,RO,RO,LSL#2
MOV RO,RO,LSR#S
MOV PC, link

.seed
EQUD 1234

traps zero seed
omit seed is never zero

mask 0 - 255

* 5
I 256

any number except zero

ARM Code 255

10. 7 .2 Square roots

One problem with ARM code programming is that important, very complex
routines provided within Basic are no longer available to you . One of these
is for calculating square roots. There are a number of algorithms for this,
but I'll stick to the two simplest methods. The first is the iterative method.
For this, you simply guess at the number, then multiply it by itself to square
it. If the result is too high, you make a downward adjustment to the guess,
and if the result is too low, you adjust up. The adjustment steps are made
progressively smaller and smaller until you reach the required accuracy.

The second method is a simple additive method. All you do is keep adding
progressively higher and higher odd numbers, keeping a count of how
many you add, until your total exceeds the number to be square rooted.
The count is then the integer part of the square root. This method is
extremely fast for small numbers, but gets progressively slower as the
numbers increase. If you add even numbers instead of odd numbers you
get a more useful figure. This is an integer value for the nearest square
root, rather than the value below the correct floating point figure.

Listing 10.7 shows both of these methods and a comparison with Basic,
along with their timings for significant numbers.

Listing 10. 7: Roots

10 REM > Roots
20 :
30 MODE 12
40 l?ROCassemble
50 :
60 M%=6000
70 l?R0Ctest(25,M%)
80 l?ROCtest(&419,M%)
90 l?ROCtest(&l0133,M%)

100 l?ROCtest(&FFFFFF,M%)
110 END
120 :
130 DEF l?ROCtest(B%,M%)
140 l?RINT"M% " iterations findinq root of ";B%
150 :
160 TIME=O
170 FORI%=0TOM%:A%=SQRB%:NEXT
180 PRINT TIME " centi-seconds Basic SQR" Sl?Cll "Result is ";SQR B%
190 :
200 TIME=O
210 FORI%=0TOM%:A%=USRC%:NEXT

256 Archimedes Game Maker's Manual

220 PRINT TIME " centi-seconds Iterative method" SPC4 "Result is ";A%
230
240 TIME=O
250 FORI%=0TOM%:A%=USRD%:NEXT
260 PRINT TIME " centi-seconds Additive method" SPC5 "Result is ";A%
270
280 TIME=O
290 FORI%=0TOM%:A%=USRE%:NEXT
300 PRINT TIME " centi-seconds Dummy code"
310 ENDPROC
320
330 DEF PROCassemble
340 DIM C% &100
350 root=O
360 number=!
370 test=2
380 step=3
390 comp=4
400 shift=5
410 mult=6
420 link=l4
430 FOR I%=0 TO 2 STEP 2
440 P%=C%
450 [OPT I%

460 MOV root,number,LSR#l
470 MOV step,root,LSR#l
480 CMP number,#&15000 adjust for big numbers
490 MOVGT shift,#1
500 MOVLE shift,#0
510 CMPGT number,#&2DOOO very big numbers
520 ADDGT shift,shift,#1
530 CMPGT number,#&5AOOO even bigger ones
540 ADDGT shift,shift,#1
550 CMPGT number,#&B5000 enormous numbers
560 ADDGT shift,shift,#1
570 CMPGT number,#&168000 stupendous ones
580 ADDGT shift,shift,#1
590 CMPGT number,#&2D4000 wow!
600 ADDGT shift,shift,#1
610 CMPGT number,#&5AOOOO phew!
620 ADDGT shift,shift,#1
630 CMPGT number,#&B40000 the limit
640 ADDGT shift,shift,#1
650 MOV comp,number,LSR shift
660 MOV comp,comp,LSR shift
670
680 .iterloop
690 MOV mult,root,LSR shift
700 MUL test,mult,mult
710 CMP test,comp
720 ADDLT root,root,step
730 SUBGT root,root,step

ARM Code

740 MOVGTS step,step,LSR#l
750 BNE iterloop
760 MOV PC, link
770
780 .D%
790 MOV root,#0
800
810 .addloop
820 ADD root , root,#1
830 SUBS number , number,root,LSL #1
840 BGE addloop
850
860 .E%
870 MOV PC, link
880 l
890 NEXT
900 ENDPROC

257

When you run the program you will see that the Basic algorithm is pretty
consistent for both speed and accuracy, bearing in mind it handles floating
point numbers. The additive method starts out by far the fastest, but gets
dramatically slower with the largest numbers. Handling purely integers, its
accuracy increases proportionately with the larger numbers. The iterative
method holds its speed quite well, but the accuracy is rather variable. This
is because of the ranging adjustments that are made. The worst case error
caused by these adjustments is nearly 5% for numbers just higher than the
last adjustment value.

10. 7 .3 Fast circles

It would seem fairly logical to assume that you could devise a circle plotting
routine that was considerable faster than the one built into Rise Os. As you
don't have to make the Mode and colour translation tests, there should be
quite an improvement in speed. If you limit the circles to those fully on
screen there isn't the problem of edge testing either. However for circle
plotting, you can't avoid some byte manipulation, and if you just perform a
byte by byte plot, you won't make much improvement in speed.

The answer is to perform a variation on the fudge idea that was introduced
earlier. Starting each line from the left, you perform a byte by byte plot until
your plotting index is word aligned. You then carry on plotting whole words
until there are no more complete words that can be fitted in. Finally you
finish off the line, plotting byte by byte again.

Listing 10.8 achieves just this, and manages to plot circles in about half the
time taken by the Rise Os plotter. The algorithm used is an interesting
adaptation of Pythagoras that gives us the perimeter of the circle without

258 Archimedes Game Maker's Manual

needing any polar calculations. When plotting small circles, the implemen­
tation breaks down a bit, and the circles become rather angular, so you
may be better off reverting to the Rise Os plotter for these. For the tiniest
ones, you should just plot a handful of bytes from a look up table.

Listing 10.8: Circles

10 REM > Circles
20
30 REM A% = X co-ordinate in bytes
40 REM B% = Y co-ordinate in lines
50 REM C% radius in bytes
60 REM D% = absolute colour
70
80 ON ERROR PROCerror:END
90 PROCinitialise

100 PROCassemble
110 REPEAT
120 D%=15+RND(47)*4
130 C%=5+RND(l28)
140 A%=C%DIV2+RND(F%-C%)
150 B%=C%DIV2+RND(G%-C%)
160 IFINKEY-99 WAIT
170 CALL code%
180 UNTIL FALSE
190
200 DEF PROCerror
210 MODE 12
220 IF ERR<>l7 PRINT REPORT$ " @ ";ERL
230 ENDPROC
240
250 DEF PROCinitialise
260 MODE 13
270 OFF
280 PRINT TAB(l3,6) "Fast Circles" TAB(8,12) "Press any key to start

"TAB(6,14) "Hold Spacebar to slow down" TAB(l2,16) "Escape to stop"
290 IF GET
300 ENDPROC
310
320 DEF PROCassemble
330 DIM block% 27
340 !block%=149
350 block%!4=6
360 block%!8=7
370 block%!12=-l
380 SYS "0S_ReadVduVariables",block%,block%+16
390 E%=block%!16 REM screen base
400 F%=block%!20 REM bytes per line
410 G%=(block%!24)DIV F% REM number of lines
420 DIM code% &180

ARM Code

430 horiz=O
440 count=O
450 vert=l
460 linesqr=l
470 radius=2
480 colour=3
490 screenadd=4
500 lines=4
510 screenline=5
520 radsqr=6
530 upper=?
540 lower=8
550 diff=9
560 shift=lO
570 upperleft=ll
580 lowerleft=O
590 blockright=l2
600 right=l
610 link=l4
620 FOR I%=0 TO 2 STEP 2
630 P%=code%
640 [OPT !%

650 ADD colour,colour,colour,LSL#8
660 ADD colour,colour,colour,LSL#l6
670 ADD upper,screenadd,horiz
680 MUL vert,screenline,vert
690 ADD upper,upper,vert
700 SUB lower,upper,screenline
710 MOV lines,#0
720 MUL radsqr,radius,radius
730
740 .vertloop
750 MUL linesqr,lines,lines
760 SUB count,radsqr,linesqr
770 MOV diff,#1
780
790 .widthloop
800 ADD diff,diff,#1
810
820

SUBS count,count,diff,LSL #5
BGT widthloop

830 ADD right,lower,diff
840 SUB upperleft,upper,diff
850 SUB lowerleft,lower,diff
860 ANDS shift,lowerleft,#3
870 BEQ block
880 RSB shift,shift,#4
890 SUB diff,right,lowerleft
900 CMP diff,shift
910 MOVLT shift,diff
920
930 .leftloop
940 STRB colour, [lowerleft],#1

259

adjust for width

260 Archimedes Game Maker's Manual

950 STRB colour, [upperleft],#1
960 SUBS shift,shift,#1
970 BNE leftloop
980 CMP diff,#4
990 BLT nomore

1000
1010 . block
1020 SUB blockright,right,#4
1030 CMP lowerleft,blockright
1040 BGE rightloop
1050
1060 .mainloop
1070 STR colour, [lowerleft],#4
1080 STR colour, [upperleft],#4
1090 CMP lowerleft,blockright
1100 BLT mainloop
1110
1120 .rightloop
1130 STRB colour , [lowerleft],#1
1140 STRB colour, [upperleft],#1
1150 CMP lowerleft,right
1160 BLT rightloop
1170
1180 . nomore
1190 ADD upper,upper,screenline
1200 SUB lower,lower,screenline
1210
1220 ADD lines,lines , #4
1230 CMP lines,radius
1240 BLE vertloop
1250 MOV PC, link
1260 l
1270 NEXT
1280 ENDPROC

10.7.4 Clipping

All the examples in this chapter have assumed that the objects being
plotted will remain within the screen boundaries. While this is highly
desirable from the programming point of view, there are times when you
want to define sprites that go off the edge of the screen. If you just let them
overlap the edges, the results will be pretty disastrous. What you have to
do is to calculate the minimum and maximum values for the start and end
points of your screens, both vertically and horizontally, then compare the
sum of the sprite coordinates and its size, with the boundary figures you
calculated. If your sprite is outside these limits you adjust its perimeter
accordingly . Don't forget that you will also need to adjust the byte or line
count to ensure that you don't just push the sprite to a different position.

ARM Code 261

To make this clearer, Figure 10.3 shows a number of clipping situations.

Add 4 bytes to X -----­
Sutraet 4 bytes -------­
from width

r--- --.,.~

'

' ' '
Add 2 bytes to X ~
Subtract 2 bytes
from width

~- - ---- - '
' ' ' ' ' ' '

' ')

\ ._____ Sprite Boundary
________ ! Crop4 bytes

from all lines

._____ Subtract 3 bytes
from width

Subtract 1 byte
from width

Add 4 lines to Y (screen terms)
Subtract 4 lines from height

t
Figure 10.3 Clipping Plotted Objects and Sprites

Sprite boundary
Crop 6 lines
from height _____.

Figure 10.3: Clipping plotted objects and sprites

'

f------- ~
' ' ' ' ' ________ ..

Subtract 1 line from height

Some Useful Sprite Calls
With all the following calls, user sprites are assumed. This is identified by
either +256 or +512 added to the value of RO. Unless otherwise stated you
can assume the following :

+256 or +512 R1 is the pointer to the sprite area you set aside
+256 R2 is a pointer to the sprite name
+512 R2 is the sprite actual address

Initialise sprite area

RO= 9+256

Before making this call you must set the first two words in your sprite area.
These should be !area=O and area!4=16

Load sprite file

RO= 10+256
R2 = pointer to file pathname

Save sprite file

RO= 12+256
R2 = pointer to file pathname

Get sprite from graphics coordinates

RO= 14+256
R2 = pointer to sprite name
R3 = O to exclude palette data, 1 to include it
Return
R2 = address of sprite

Some Useful Sprite Calls

Create empty sprite

RO= 1 S+2S6
R2 = pointer to sprite name
R3 = O to exclude palette data, 1 to include it
R4 = width in pixels
RS = height in pixels
R6 = screen Mode number

Get sprite from user coordinates
RO= 16+2S6
R2 = pointer to sprite name
R3 = O to exclude palette data, 1 to include it
R4 = left edge OS screen coordinate
RS = bottom edge OS screen coordinate
R6 = right edge OS screen coordinate
R? = top edge OS screen coordinate

Return
R2 = address of sprite

Put sprite to current graphics cursor

RO= 28+S12
RS = plot action

Plot actions are as follows:

O overwrite on screen
1 OR with colour on screen

2 AND with colour on screen

3 EOR with colour on screen

4 invert colour on screen

S leave colour on screen unchanged

6 AND with colour on screen with NOT of sprite pixel colour

7 OR with colour on screen with NOT of sprite pixel colour

&08 if set, use mask, otherwise don't

&10 ECF pattern 1

&20 ECF pattern 2

263

264

&30 ECF pattern 3
&40 ECF pattern 4
&SO giant ECF pattern

Create mask with all pixels set (solid}

RO= 29+S12

Put sprite at user coordinates

RO= 34+S12
R3 = X coordinate
R4 = Y coordinate
RS = plot action

Read pixel from sprite

RO= 42+S12
R3 = X coordinate
R4 = Y coordinate
Return
RS= colour
R6 =tint

Write pixel to sprite

RO= 42+S12
R3 = X coordinate
R4 = Y coordinate
RS= colour
R6 =tint

Read mask pixels

RO= 43+S12
R3 = X coordinate
R4 = Y coordinate
Return
R5 = status, O for transparent, 1 for solid

Write mask pixels

RO= 44+S12
R3 = X coordinate
R4 = Y coordinate
RS= status

Archimedes Game Maker's Manual

Some Useful Sprite Calls

Put scaled sprite

RO= 52+512
R3 = X coordinate to plot
R4 = Y coordinate to plot
RS = plot action
R6 = pointer to scale control block
R? = pointer to pixel translation table, O to use sprite colours

The scale control block byte offsets are as below

O X multiplier
4 Y multiplier
8 X divisor
12 Y divisor

265

For pixel translation, a sprite pixel colour of N will be plotted as the colour
represented by the Nth byte in the table.

Switch output to sprite

RO= 60+512
R2 = sprite address as usual, but if zero will restore screen output
R3 = save area (generally not needed, set to 0)

Switch output to mask

R0=61+512
R2 = sprite mask address, O for screen output
R3 = save area, normally 0

VDU Variables (Sub-set)

Number
1
2
4
5
6
7
148
149
150

Meaning
Maximum column number for printing
Maximum row number for printing
Barrel shift right to convert X coordinate to screen pixels
Barrel shift right to convert Y coordinate to screen pixels
Screen line length in bytes
Size in bytes of the visible screen
Address of screen start use by VDU drivers
Address of displayed screen start
Total number of bytes currently available to screen

Screen Modes for Standard
Monitors

Mode Text Graphics Colours Memory
0 80x32 640x256 2 20k
1 40x32 320x256 4 20k
2 20x32 160x256 16 40k
3 80x25 Text only 2 40k
4 40x32 320x256 2 20k
5 20x32 160x256 4 20k
6 40x25 Text only 2 20k
7 40x25 TELETEXT 16 80k

8 80x32 640x256 4 40k
9 40x32 320x256 16 40k
10 20x32 160x256 256 80k
11 80x25 640x250 4 40k
12 80x32 640x256 16 80k
13 40x32 320x256 256 80k
14 80x25 640x250 16 80k
15 80x32 640x256 256 160k
16 132x32 1056x256 16 132k
17 132x25 1056x250 16 132k

Plot Codes

Plot codes are in groups of eight. Below are the base numbers of each group.
Dec
0
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200

Hex
00
08
10
18
20
28
30
38
40
48
50
58
60
68
70
78
80
88
90
98
AO
A8
BO
B8
co
C8

Meaning
Solid line including both end points
Solid line excluding final point
Dotted line including both end points
Dotted line excluding final point
Solid line excluding first point
Solid line excluding both end points
Dotted line excluding first point
Dotted line excluding both end points
Point plot
Horizontal line fill to non-background (left and right)
Triangle fill
Horizontal line fill to background (right only)
Rectangle fill
Horizontal line fill to foreground (left and right)
Parallelogram fill
Horizontal line fill to non-foreground (right only)
Flood fill to background
Flood fill to foreground
Circle outline
Circle fill
Circular arc
Segment
Sector
Block copy/move
Ellipse outline
Ellipse fill

Plot Codes 269

Within eack block the offset from the base number has the following
meaning:

0
1
2
3
4
5
6
7

Move cursor relative to last point visited
Draw relative, using current foreground colour
Draw relative, using logical inverse colour
Draw relative, using current background colour
Move cursor to absolute coordinates
Draw absolute, using current foreground colour
Draw absolute, using logical inverse colour
Draw absulute, using current background colour

Block copy and move are exceptions whose codes are:

0
1
2
3
4
5
6
7

Move only, relative
Move rectangle relative
Copy rectangle relative
Copy rectangle relative
Move only, absolute
Move rectangle absolute
Copy rectangle absolute
Copy rectangle absolute

VDU Commands
Code
0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32-255

Ctrl
@
A
B
c
D
E
F
G
H

I
J
K
L
M
N
0
p
a
R
s
T
u
v
w
x
y
z
[
\
l
I\

Bytes
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
2
0
0
0
1
9
8
5
0
0
4
4
0
2

Meaning
Does nothing
Sends next character to printer only
Enables printer
Disables printer
Writes characters at text cursor
Writes characters at graphics cursor
Enables VDO driver
Generates bell sound
Moves cursor back one character or deletes
previous character
Moves cursor on one space
Moves cursor down one line
Moves cursor up one line
Clears text area
Moves cursor to start of current line
Enables page mode
Disables page mode
Clears graphics area
Defines text colour
Defines graphics colour
Defines logical colour
Restores default colours
Disables VDU driver or deletes current line
Selects screen mode
General purpose command
Defines graphics window
PLOT
Restores default windows
Does nothing
Defines text window
Defines graphics origin
Homes text cursor
Moves text cursor
Display characters

Negative lnkey Values

Key Number Key Number
Cursor up -58 Mouse select -10
Cursor down -42 Mouse menu -11
Cursor left -26 Mouse adjust -12
Cursor right -122 -94
<Print> -33 -103
<F1> -114 -24
<F2> -115 -104
<F3> -116 I -105
<F4> - 21 [- 57
<F5> -117 \ -121
<F6> -118] -89
<F7> -23 -88
<F8> -119 <Esc> -113
<F9> -120 <Tab> -97
<FlO> -31 <Caps Lock> --65
<Fil> - 29 <Scroll Lock> -32
<F12> - 30 <Num Lock> -78
A -66 <Break> -47
B -101 -\' -46
c -83 Currency -47
D -51 <Back Space> -48
E -35 <Insert> -62
F -68 <Home> -63
G -84 <Page Up> -64
H -85 <Page Down> -79
I -38 '\" -80

272 Archimedes Game Maker's Manual

J -70 <Shift> (either/both) -1
K -71 <Alt> (either/both) -3
L -87 <Shift> (left/right) -4/-7
M -102 <Ctrl> (left/right) -5/-8
N -86 <Alt> (left/right> -6/-9
0 -55 Space bar -99
p -56 <Delete> -90
Q -17 <Return> -74
R -52 <Copy> -106
s -82 Keypad O -107
T -36 Keypad 1 -108
u -54 Keypad 2 -125
v -100 Keypad 3 -109
w -34 Keypad 4 -123
x -67 Keypad 5 -124
y -69 Keypad 6 -27
z -98 Keypad 7 -28
0 -40 Keypad 8 -48
1 -49 Keypad 9 -44
2 -50 Keypad+ -59
3 -18 Keypad- -60
4 -19 Keypad . -77
5 -20 Keypad I -75
6 -53 Keypad# -91
7 -37 Keypad• -92
8 -22 Keypad <Enter> -61
9 -39

INDEX

A
Adventures 188
algorithms

general 15, 19, 30, 95, 206, 209, 219,
257

sound generating 2
Animating sprites 73
An imation 70
Arcade games 14, 140
Arithmetic 30
ARM 2 20
ARM 3 20, 32, 76
ARM code 3, 6, 25, 64, 78, 86, 95, 97,

144, 169, 171, 225
ARM code scrolling 95
ARM collisions 239
ARM scrolling 248
ARM sprites 232
array

B

parallel 6, 169, 179, 182
whole 110, 152

Backgrounds 50
barrel shifting 25, 170, 202, 254
Basic editor 9
Basic Guide 4, 36
BBC computer 1 6
BBC Master 48
BBC Model B 11, 171, 229
Binary searching 219

c
Card Games 214
cartoon15, 37,96,99
Cell collisions 81
CLG54
CLS 54, 86
collision detection 75
collisions

cell81
coordinate 75
pixel 79
pointer 87

COLOUR 71
Colour changing 71
colours

primary 39
command line 1
compression 219
configuration 119
configuring 20
constants 7
coordinate collisions 75
cosine table 31
Ctrl key 5

D
damping 152
Data Structures 24
desktop 17, 179, 205
dithering 51
division by zero 1 09
documentation 11, 12
drawings, wire-frame 103

274

E
ECF patterns 48
Escape key 5, 17

F
flags 33
flow charts 1 0
fonts 59
FX 71

G
game types 14
golden ratio 27
Graphics, static 36

H
hardware scrolling 90
hidden lines 109
horizon 96, 103

INKEY 108
lnkey values 271
integers, resident 6, 253
interleaving 34

J
joystick 19

L
languages, compiled 3
Look-up tables 31

M
map 15, 179, 188, 202
map compression 169
matrices 11 O
Memalloc 19, 21
MEMC1A 20
minimaxing 209
Mode 17,24,31,44,57, 71, 78, 152
movement 63
movement tables 140, 226
multi-tasking 17, 32, 205
Music 113

0
operating system

Arthur 1
Rise 1, 39, 44, 52, 59, 87, 119, 225,

232

Archimedes Game Maker's Manual

OS_Byte 53
Othello 213

p
parallax 96
parallel arrays 143, 169, 179, 182
parser 190
peek 2, 4, 232
perspective 99
pixel collisions 79
platform games 1 61
plinth construction 58
plot codes 268
pointer collisions 87
poke 2, 4
primary colours 39
printing

faster 29
Programmers Reference Manual 4
programming techniques 4
pseudo animation 71
pseudo code 1 o, 24, 209
pseudo language 195
public domain 19, 27, 32, 36
Pythagoras 34, 75, 257

R
random numbers 254
rebounds 153
recursion 209

limiting 21 O
Reference Manual

Programmer's 41, 88
resident integers 253
RESTORE 31
Rise Os 1, 39, 44, 52, 59, 87, 119, 225,

232
RMA 21, 119
RMtidy 119
role playing 14, 178
rotation 11 O
RPGs 178

s
scaling factors 97, 98
scaling fonts 60
score tables 1 70
screen handling 31
screen modes 267
scrolling 90

ARM code 95
hardware 90
software 93

Index

Shift/Break 17
simulators 197
sine 31
skip-over 88
sound production 2, 113
Sprites 40

animating 73
ARM 232
control 40
masking 40
user 40

status, saving 205
strategy 14, 206
subroutines 29
SYS 4, 53, 61, 113

T
time sharing 34
TINT 79
tints 39, 59

u
user defined characters 44

v
vanishing point 99, 103, 108, 109
VDU commands 270
VDU drivers 3, 30, 39, 43, 53, 228
VDU variables 266
voice generator 119

w
WAIT 66
whole array 152
wimp 1, 35, 87, 88, 215
wire-frame drawings 103

I

275

